Obesity has become a global chronic metabolic disease, posing a serious threat to public health. Glucagon-like peptide-1 (GLP-1) is an important hormone secreted by the L cells of the small intestine during food digestion. It plays a key role in maintaining glucose homeostasis, by promoting insulin synthesis and secretion, inhibiting glucagon release, and reducing hepatic glycogen output. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are analogs of GLP-1 that can resist degradation by DPP4 enzyme. They exert multiple physiological effects by activating the glucagon-like peptide-1 receptor (GLP-1R) and its downstream signaling pathways, including enhancing insulin secretion, suppressing appetite, and slowing gastric emptying. As a new class of weight management drugs, GLP-1RAs have diverse weight loss mechanisms and significant clinical effects. The new GLP-1RA, which has better weight loss, better safety, and improved dosing methods, significantly improves patient compliance. This article systematically summarizes the mechanism of action, efficacy, and safety of GLP-1 receptor agonists in weight loss treatment, aiming to provide new insights and evidence for clinicians when selecting medications for weight reduction.
References
[1]
Romieu, I., Dossus, L., Barquera, S., Blottière, H.M., Franks, P.W., Gunter, M., et al. (2017) Energy Balance and Obesity: What Are the Main Drivers? CancerCauses&Control, 28, 247-258. https://doi.org/10.1007/s10552-017-0869-z
[2]
Al-Jawaldeh, A. and Abbass, M.M.S. (2022) Unhealthy Dietary Habits and Obesity: The Major Risk Factors Beyond Non-Communicable Diseases in the Eastern Mediterranean Region. FrontiersinNutrition, 9, Article 817808. https://doi.org/10.3389/fnut.2022.817808
[3]
Mahmoud, R., Kimonis, V. and Butler, M.G. (2022) Genetics of Obesity in Humans: A Clinical Review. InternationalJournalofMolecularSciences, 23, 11005. https://doi.org/10.3390/ijms231911005
[4]
Phelps, N.H., Singleton, R.K., Zhou, B., Heap, R.A., Mishra, A., Bennett, J.E., et al. (2024) Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. TheLancet, 403, 1027-1050. https://doi.org/10.1016/s0140-6736(23)02750-2
[5]
Zhou, B., Sorić, M., Ahmadi, A., et al. (2024) Worldwide Trends in Underweight and Obesity from 1990 to 2022: A Pooled Analysis of 3663 Population-Representative Studies with 222 Million Children, Adolescents, and Adults. TheLancet (British Edition), 403, 1027-1050.
[6]
Jehan, S., Zizi, F., Pandi-Perumal, S.R., McFarlane, S.I., Jean-Louis, G. and K Myers, A. (2020) Energy Imbalance: Obesity, Associated Comorbidities, Prevention, Management and Public Health Implications. AdvancesinObesity, WeightManagement&Control, 10, 146-161. https://doi.org/10.15406/aowmc.2020.10.00321
[7]
Chen, K., Shen, Z., Gu, W., Lyu, Z., Qi, X., Mu, Y., et al. (2023) Prevalence of Obesity and Associated Complications in China: A Cross-Sectional, Real-World Study in 15.8 Million Adults. Diabetes, ObesityandMetabolism, 25, 3390-3399. https://doi.org/10.1111/dom.15238
[8]
Piché, M., Tchernof, A. and Després, J. (2020) Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. CirculationResearch, 126, 1477-1500. https://doi.org/10.1161/circresaha.120.316101
[9]
Chandrasekaran, P. and Weiskirchen, R. (2024) The Role of Obesity in Type 2 Diabetes Mellitus—An Overview. InternationalJournalofMolecularSciences, 25, Article 1882. https://doi.org/10.3390/ijms25031882
[10]
Service, C.A., Puri, D., Al Azzawi, S., Hsieh, T. and Patel, D.P. (2023) The Impact of Obesity and Metabolic Health on Male Fertility: A Systematic Review. FertilityandSterility, 120, 1098-1111. https://doi.org/10.1016/j.fertnstert.2023.10.017
[11]
Qi, R.B., Chen, B., Li, Z.M., et al. (2023) Research Progress on the Effects of Obesity on Male Reproductive Health. Chinese Journal of Endocrinology and Metabolism, 39, 1083-1088. https://doi.org/10.3760/cma.j.cn311282-20230511-00219
[12]
Broughton, D.E. and Moley, K.H. (2017) Obesity and Female Infertility: Potential Mediators of Obesity’s Impact. FertilityandSterility, 107, 840-847. https://doi.org/10.1016/j.fertnstert.2017.01.017
[13]
Davidson, K.W., Barry, M.J., Mangione, C.M., Cabana, M., Caughey, A.B., Davis, E.M., et al. (2021) Behavioral Counseling Interventions for Healthy Weight and Weight Gain in Pregnancy: US Preventive Services Task Force Recommendation Statement. JAMA, 325, 2087-2093. https://doi.org/10.1001/jama.2021.6949
[14]
Pati, S., Irfan, W., Jameel, A., Ahmed, S. and Shahid, R.K. (2023) Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers, 15, Article 485. https://doi.org/10.3390/cancers15020485
[15]
Zhang, H., Zhou, X., Shapiro, M.D., et al. (2024) Global Burden of Metabolic Diseases, 1990-2021. Metabolism: Clinical and Experimental, 160, Article ID: 155999.
[16]
Lopez, P., Taaffe, D.R., Galvão, D.A., Newton, R.U., Nonemacher, E.R., Wendt, V.M., et al. (2022) Resistance Training Effectiveness on Body Composition and Body Weight Outcomes in Individuals with Overweight and Obesity across the Lifespan: A Systematic Review and Meta-Analysis. ObesityReviews, 23, e13428. https://doi.org/10.1111/obr.13428
[17]
Cheng, X., Sun, S., Chen, M., Zhou, X., Rao, M., Guo, D., et al. (2024) Evaluating the Efficacy of Intermittent Fasting and Exercise Combinations for Weight Loss: A Network Meta-Analysis. ObesityReviews, 25, e13834. https://doi.org/10.1111/obr.13834
[18]
Gudzune, K.A. and Kushner, R.F. (2024) Medications for Obesity: A Review. JAMA, 332, 571-584. https://doi.org/10.1001/jama.2024.10816
[19]
Perdomo, C.M., Cohen, R.V., Sumithran, P., Clément, K. and Frühbeck, G. (2023) Contemporary Medical, Device, and Surgical Therapies for Obesity in Adults. TheLancet, 401, 1116-1130. https://doi.org/10.1016/s0140-6736(22)02403-5
[20]
Xie, Y., Gu, Y., Li, Z., He, B. and Zhang, L. (2024) Effects of Different Exercises Combined with Different Dietary Interventions on Body Composition: A Systematic Review and Network Meta-analysis. Nutrients, 16, Article 3007. https://doi.org/10.3390/nu16173007
[21]
Machado, A.M., Guimarães, N.S., Bocardi, V.B., da Silva, T.P.R., Carmo, A.S.D., Menezes, M.C.D., et al. (2022) Understanding Weight Regain after a Nutritional Weight Loss Intervention: Systematic Review and Meta-Analysis. ClinicalNutritionESPEN, 49, 138-153. https://doi.org/10.1016/j.clnesp.2022.03.020
[22]
Wing, R.R. and Phelan, S. (2005) Long-Term Weight Loss Maintenance. TheAmericanJournalofClinicalNutrition, 82, 222S-225S. https://doi.org/10.1093/ajcn/82.1.222s
[23]
Bessesen, D.H. and Van Gaal, L.F. (2018) Progress and Challenges in Anti-Obesity Pharmacotherapy. TheLancetDiabetes&Endocrinology, 6, 237-248. https://doi.org/10.1016/s2213-8587(17)30236-x
[24]
Mahapatra, M.K., Karuppasamy, M. and Sahoo, B.M. (2022) Semaglutide, a Glucagon Like Peptide-1 Receptor Agonist with Cardiovascular Benefits for Management of Type 2 Diabetes. ReviewsinEndocrineandMetabolicDisorders, 23, 521-539. https://doi.org/10.1007/s11154-021-09699-1
[25]
Li, Q., Gao, H., Guo, Y., Wang, B., Hua, R., Gao, L., et al. (2021) GLP-1 and Underlying Beneficial Actions in Alzheimer’s Disease, Hypertension, and Nash. FrontiersinEndocrinology, 12, Article 721198. https://doi.org/10.3389/fendo.2021.721198
[26]
Nauck, M.A., Quast, D.R., Wefers, J. and Pfeiffer, A.F.H. (2021) The Evolving Story of Incretins (GIP and GLP‐1) in Metabolic and Cardiovascular Disease: A Pathophysiological Update. Diabetes, ObesityandMetabolism, 23, 5-29. https://doi.org/10.1111/dom.14496
[27]
Hogan, A.E., Tobin, A.M., Ahern, T., Corrigan, M.A., Gaoatswe, G., Jackson, R., et al. (2011) Glucagon-like Peptide-1 (GLP-1) and the Regulation of Human Invariant Natural Killer T Cells: Lessons from Obesity, Diabetes and Psoriasis. Diabetologia, 54, 2745-2754. https://doi.org/10.1007/s00125-011-2232-3
[28]
Nagae, K., Uchi, H., Morino-Koga, S., Tanaka, Y., Oda, M. and Furue, M. (2018) Glucagon-Like Peptide-1 Analogue Liraglutide Facilitates Wound Healing by Activating PI3K/Akt Pathway in Keratinocytes. DiabetesResearchandClinicalPractice, 146, 155-161. https://doi.org/10.1016/j.diabres.2018.10.013
[29]
Sandoval, D. (2008) CNS GLP-1 Regulation of Peripheral Glucose Homeostasis. Physiology&Behavior, 94, 670-674. https://doi.org/10.1016/j.physbeh.2008.04.018
[30]
Chen, J., Zhao, H., Ma, X., Zhang, Y., Lu, S., Wang, Y., et al. (2017) GLP-1/GLP-1R Signaling in Regulation of Adipocyte Differentiation and Lipogenesis. CellularPhysiologyandBiochemistry, 42, 1165-1176. https://doi.org/10.1159/000478872
[31]
Burmeister, M.A., Brown, J.D., Ayala, J.E., Stoffers, D.A., Sandoval, D.A., Seeley, R.J., et al. (2017) The Glucagon-Like Peptide-1 Receptor in the Ventromedial Hypothalamus Reduces Short-Term Food Intake in Male Mice by Regulating Nutrient Sensor Activity. AmericanJournalofPhysiology-EndocrinologyandMetabolism, 313, E651-E662. https://doi.org/10.1152/ajpendo.00113.2017
[32]
Nauck, M. (2016) Incretin Therapies: Highlighting Common Features and Differences in the Modes of Action of Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Diabetes, ObesityandMetabolism, 18, 203-216. https://doi.org/10.1111/dom.12591
[33]
Costa, A., Ai, M., Nunn, N., Culotta, I., Hunter, J., Boudjadja, M.B., et al. (2022) Anorectic and Aversive Effects of GLP-1 Receptor Agonism Are Mediated by Brainstem Cholecystokinin Neurons, and Modulated by GIP Receptor Activation. MolecularMetabolism, 55, Article ID: 101407. https://doi.org/10.1016/j.molmet.2021.101407
[34]
Drucker, D.J. (2022) GLP-1 Physiology Informs the Pharmacotherapy of Obesity. MolecularMetabolism, 57, Article ID: 101351. https://doi.org/10.1016/j.molmet.2021.101351
[35]
Fortin, S.M., Lipsky, R.K., Lhamo, R., Chen, J., Kim, E., Borner, T., et al. (2020) GABA Neurons in the Nucleus Tractus Solitarius Express GLP-1 Receptors and Mediate Anorectic Effects of Liraglutide in Rats. ScienceTranslationalMedicine, 12, eaay8071. https://doi.org/10.1126/scitranslmed.aay8071
[36]
Halim, M.A., Degerblad, M., Sundbom, M., Karlbom, U., Holst, J.J., Webb, D., et al. (2017) Glucagon-Like Peptide-1 Inhibits Prandial Gastrointestinal Motility through Myenteric Neuronal Mechanisms in Humans. TheJournalofClinicalEndocrinology&Metabolism, 103, 575-585. https://doi.org/10.1210/jc.2017-02006
[37]
Chen, Z., Deng, X., Shi, C., Jing, H., Tian, Y., Zhong, J., et al. (2024) GLP-1R-Positive Neurons in the Lateral Septum Mediate the Anorectic and Weight-Lowering Effects of Liraglutide in Mice. JournalofClinicalInvestigation, 134, e178239. https://doi.org/10.1172/jci178239
[38]
Reiner, D.J., Leon, R.M., McGrath, L.E., Koch-Laskowski, K., Hahn, J.D., Kanoski, S.E., et al. (2017) Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Dorsal Tegmental Nucleus Regulates Energy Balance. Neuropsychopharmacology, 43, 627-637. https://doi.org/10.1038/npp.2017.225
[39]
Zeng, Y., Wu, Y., Zhang, Q. and Xiao, X. (2024) Crosstalk between Glucagon-Like Peptide 1 and Gut Microbiota in Metabolic Diseases. mBio, 15, e203223. https://doi.org/10.1128/mbio.02032-23
[40]
Aldawsari, M., Almadani, F.A., Almuhammadi, N., Algabsani, S., Alamro, Y. and Aldhwayan, M. (2023) The Efficacy of GLP-1 Analogues on Appetite Parameters, Gastric Emptying, Food Preference and Taste among Adults with Obesity: Systematic Review of Randomized Controlled Trials. Diabetes, MetabolicSyndromeandObesity, 16, 575-595. https://doi.org/10.2147/dmso.s387116
[41]
Zhu, E., Yang, Y., Zhang, J., Li, Y., Li, C., Chen, L., et al. (2016) Liraglutide Suppresses Obesity and Induces Brown Fat-Like Phenotype via Soluble Guanylyl Cyclase Mediated Pathway inVivo and inVitro. Oncotarget, 7, 81077-81089. https://doi.org/10.18632/oncotarget.13189
[42]
Lin, B.S., Xv, H.X., Liang, H., etal. (2015) Effect and Mechanism of GLP-1 Receptor Agonists on Adipose Tissue in Obese Mice. ChineseJournalofPathophysiology, 31, 2021-2026.
Wu, Y., Shi, X., Ma, C., Zhang, Y., Xu, R. and Li, J. (2019) Liraglutide Improves Lipid Metabolism by Enhancing Cholesterol Efflux Associated with ABCA1 and ERK1/2 Pathway. CardiovascularDiabetology, 18, Article No. 146. https://doi.org/10.1186/s12933-019-0954-6
[45]
Wang, H., Wang, L., Li, Y., Luo, S., Ye, J., Lu, Z., et al. (2021) The Hif-2α/pparα Pathway Is Essential for Liraglutide-Alleviated, Lipid-Induced Hepatic Steatosis. Biomedicine&Pharmacotherapy, 140, Article ID: 111778. https://doi.org/10.1016/j.biopha.2021.111778
[46]
Zhang, F., Chen, Z., Wu, D., Tian, L., Chen, Q., Ye, Y., et al. (2021) Recombinant Human GLP-1 Beinaglutide Regulates Lipid Metabolism of Adipose Tissues in Diet-Induced Obese Mice. iScience, 24, Article ID: 103382. https://doi.org/10.1016/j.isci.2021.103382
[47]
Kelly, A.S., Rudser, K.D., Nathan, B.M., Fox, C.K., Metzig, A.M., Coombes, B.J., et al. (2013) The Effect of Glucagon-Like Peptide-1 Receptor Agonist Therapy on Body Mass Index in Adolescents with Severe Obesity: A Randomized, Placebo-Controlled, Clinical Trial. JAMAPediatrics, 167, 355-360. https://doi.org/10.1001/jamapediatrics.2013.1045
[48]
Tsapas, A., Karagiannis, T., Kakotrichi, P., Avgerinos, I., Mantsiou, C., Tousinas, G., et al. (2021) Comparative Efficacy of Glucose-Lowering Medications on Body Weight and Blood Pressure in Patients with Type 2 Diabetes: A Systematic Review and Network Meta‐analysis. Diabetes, ObesityandMetabolism, 23, 2116-2124. https://doi.org/10.1111/dom.14451
[49]
Sheng, L., Deng, M., Li, X., Wan, H., Lei, C., Prabahar, K., et al. (2024) The Effect of Subcutaneous Lixisenatide on Weight Loss in Patients with Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis of Randomized Controlled Trials. DiabetesResearchandClinicalPractice, 210, Article ID: 111617. https://doi.org/10.1016/j.diabres.2024.111617
[50]
Pi-Sunyer, X., Astrup, A., Fujioka, K., Greenway, F., Halpern, A., Krempf, M., et al. (2015) A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. NewEnglandJournalofMedicine, 373, 11-22. https://doi.org/10.1056/nejmoa1411892
[51]
Fox, C.K., Barrientos-Pérez, M., Bomberg, E.M., Dcruz, J., Gies, I., Harder-Lauridsen, N.M., et al. (2025) Liraglutide for Children 6 to <12 Years of Age with Obesity—A Randomized Trial. NewEnglandJournalofMedicine, 392, 555-565. https://doi.org/10.1056/nejmoa2407379
[52]
Ishii, S., Nagai, Y., Sada, Y., Fukuda, H., Nakamura, Y., Matsuba, R., et al. (2019) Liraglutide Reduces Visceral and Intrahepatic Fat without Significant Loss of Muscle Mass in Obese Patients with Type 2 Diabetes: A Prospective Case Series. JournalofClinicalMedicineResearch, 11, 219-224. https://doi.org/10.14740/jocmr3647
[53]
Rubino, D.M., Greenway, F.L., Khalid, U., O’Neil, P.M., Rosenstock, J., Sørrig, R., et al. (2022) Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults with Overweight or Obesity without Diabetes: The STE P 8 Randomized Clinical Trial. JAMA, 327, 138-150. https://doi.org/10.1001/jama.2021.23619
[54]
Ryan, D.H., Lingvay, I., Deanfield, J., Kahn, S.E., Barros, E., Burguera, B., et al. (2024) Long-term Weight Loss Effects of Semaglutide in Obesity without Diabetes in the SELECT Trial. NatureMedicine, 30, 2049-2057. https://doi.org/10.1038/s41591-024-02996-7
[55]
Weghuber, D., Barrett, T., Barrientos-Pérez, M., Gies, I., Hesse, D., Jeppesen, O.K., et al. (2022) Once-Weekly Semaglutide in Adolescents with Obesity. NewEnglandJournalofMedicine, 387, 2245-2257. https://doi.org/10.1056/nejmoa2208601
[56]
Knop, F.K., Aroda, V.R., do Vale, R.D., Holst-Hansen, T., Laursen, P.N., Rosenstock, J., et al. (2023) Oral Semaglutide 50 Mg Taken Once per Day in Adults with Overweight or Obesity (OASIS 1): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. TheLancet, 402, 705-719. https://doi.org/10.1016/s0140-6736(23)01185-6
[57]
Chen, K., Chen, L., Shan, Z., Wang, G., Qu, S., Qin, G., et al. (2023) Beinaglutide for Weight Management in Chinese Individuals with Overweight or Obesity: A Phase 3 Randomized Controlled Clinical Study. Diabetes, ObesityandMetabolism, 26, 690-698. https://doi.org/10.1111/dom.15360
[58]
Li, Y., Gong, X., Găman, M., Hernández-Wolters, B., Velu, P. and Li, Y. (2023) The Effect of Subcutaneous Dulaglutide on Weight Loss in Patients with Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis of Randomized Controlled Trials. EuropeanJournalofClinicalInvestigation, 54, e14125. https://doi.org/10.1111/eci.14125
[59]
Pratley, R.E., Aroda, V.R., Lingvay, I., Lüdemann, J., Andreassen, C., Navarria, A., et al. (2018) Semaglutide versus Dulaglutide Once Weekly in Patients with Type 2 Diabetes (SUSTAIN 7): A Randomised, Open-Label, Phase 3B Trial. TheLancetDiabetes&Endocrinology, 6, 275-286. https://doi.org/10.1016/s2213-8587(18)30024-x
[60]
Karagiannis, T., Malandris, K., Avgerinos, I., Stamati, A., Kakotrichi, P., Liakos, A., et al. (2024) Subcutaneously Administered Tirzepatide vs Semaglutide for Adults with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. Diabetologia, 67, 1206-1222. https://doi.org/10.1007/s00125-024-06144-1
[61]
Zhao, L., Cheng, Z., Lu, Y., Liu, M., Chen, H., Zhang, M., et al. (2024) Tirzepatide for Weight Reduction in Chinese Adults with Obesity: The S URMOUNT-CN Randomized Clinical Trial. JAMA, 332, 551-560. https://doi.org/10.1001/jama.2024.9217
[62]
Iqbal, J., Wu, H., Hu, N., Zhou, Y., Li, L., Xiao, F., et al. (2022) Effect of Glucagon-Like Peptide-1 Receptor Agonists on Body Weight in Adults with Obesity without Diabetes Mellitus—A Systematic Review and Meta-Analysis of Randomized Control Trials. ObesityReviews, 23, e13435. https://doi.org/10.1111/obr.13435
[63]
Dushay, J., Gao, C., Gopalakrishnan, G.S., Crawley, M., Mitten, E.K., Wilker, E., et al. (2011) Short-Term Exenatide Treatment Leads to Significant Weight Loss in a Subset of Obese Women without Diabetes. DiabetesCare, 35, 4-11. https://doi.org/10.2337/dc11-0931
[64]
Wang, X., Zhao, X., Gu, Y., Zhu, X., Yin, T., Tang, Z., et al. (2020) Effects of Exenatide and Humalog Mix25 on Fat Distribution, Insulin Sensitivity, and β-Cell Function in Normal BMI Patients with Type 2 Diabetes and Visceral Adiposity. JournalofDiabetesResearch, 2020, Article ID: 9783859. https://doi.org/10.1155/2020/9783859
[65]
Shao, Q., Yu, Y.N., Huang, Y.H., et al. (2022) Predictors of Exenatide in Reducing Body Weight in Patients with Type 2 Diabetes Mellitus. Chinese Clinical PharmacologyandTherapeutics, 27, 287-294. https://doi.org/10.12092/j.issn.1009-2501.2022.03.007
[66]
Gorgojo-Martínez, J.J., Mezquita-Raya, P., Carretero-Gómez, J., Castro, A., Cebrián-Cuenca, A., de Torres-Sánchez, A., et al. (2022) Clinical Recommendations to Manage Gastrointestinal Adverse Events in Patients Treated with GLP-1 Receptor Agonists: A Multidisciplinary Expert Consensus. JournalofClinicalMedicine, 12, Article 145. https://doi.org/10.3390/jcm12010145
[67]
He, L., Wang, J., Ping, F., Yang, N., Huang, J., Li, Y., et al. (2022) Association of Glucagon-Like Peptide-1 Receptor Agonist Use with Risk of Gallbladder and Biliary Diseases: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMAInternalMedicine, 182, 513-519. https://doi.org/10.1001/jamainternmed.2022.0338
[68]
Sodhi, M., Rezaeianzadeh, R., Kezouh, A. and Etminan, M. (2023) Risk of Gastrointestinal Adverse Events Associated with Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA, 330, 1795-1797. https://doi.org/10.1001/jama.2023.19574
[69]
Saxena, A.R., Gorman, D.N., Esquejo, R.M., Bergman, A., Chidsey, K., Buckeridge, C., et al. (2021) Danuglipron (PF-06882961) in Type 2 Diabetes: A Randomized, Placebo-Controlled, Multiple Ascending-Dose Phase 1 Trial. NatureMedicine, 27, 1079-1087. https://doi.org/10.1038/s41591-021-01391-w
[70]
Monami, M., Dicembrini, I., Nardini, C., Fiordelli, I. and Mannucci, E. (2014) Glucagon-Like Peptide-1 Receptor Agonists and Pancreatitis: A Meta-Analysis of Randomized Clinical Trials. DiabetesResearchandClinicalPractice, 103, 269-275. https://doi.org/10.1016/j.diabres.2014.01.010
[71]
Filippatos, T.D., Panagiotopoulou, T.V. and Elisaf, M.S. (2014) Adverse Effects of GLP-1 Receptor Agonists. TheReviewofDiabeticStudies, 11, 202-230. https://doi.org/10.1900/rds.2014.11.202
[72]
Anthony, M.S., Aroda, V.R., Parlett, L.E., Djebarri, L., Berreghis, S., Calingaert, B., et al. (2024) Risk of Anaphylaxis among New Users of GLP-1 Receptor Agonists: A Cohort Study. DiabetesCare, 47, 712-719. https://doi.org/10.2337/dc23-1911
[73]
Chen, W., Cai, P., Zou, W. and Fu, Z. (2024) Psychiatric Adverse Events Associated with GLP-1 Receptor Agonists: A Real-World Pharmacovigilance Study Based on the FDA Adverse Event Reporting System Database. FrontiersinEndocrinology, 15, Article 1330936. https://doi.org/10.3389/fendo.2024.1330936
[74]
Liang, J., Liu, Q., Chen, Y., et al. (2022) Effect of Glucotide Combined with Metformin and Dapagliflozin on Glucose and Lipid Metabolism in Patients with Newly Diagnosed Type 2 Diabetes Mellitus. InternalMedicine, 17, 495-498.
[75]
Zhang, M., Lin, C., Cai, X., Jiao, R., Bai, S., Li, Z., et al. (2024) One or Two? Comparison of the Cardiorenal Effects between Combination Therapy and Monotherapy with SGLT2i or GLP1RA. Diabetes, ObesityandMetabolism, 27, 806-815. https://doi.org/10.1111/dom.16078
[76]
Ren, R., Pei, Y., Kong, L. and Shi, Y. (2025) The Effect of Semaglutide Combined with Metformin on Liver Inflammation and Pancreatic Beta-Cell Function in Patients with Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. JournalofDiabetesanditsComplications, 39, Article ID: 108932. https://doi.org/10.1016/j.jdiacomp.2024.108932
[77]
Moiz, A., Filion, K.B., Toutounchi, H., Tsoukas, M.A., Yu, O.H.Y., Peters, T.M., et al. (2025) Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss among Adults without Diabetes: A Systematic Review of Randomized Controlled Trials. AnnalsofInternalMedicine, 178, 199-217. https://doi.org/10.7326/annals-24-01590
[78]
Wilding, J.P.H., Batterham, R.L., Calanna, S., Davies, M., Van Gaal, L.F., Lingvay, I., et al. (2021) Once-Weekly Semaglutide in Adults with Overweight or Obesity. NewEnglandJournalofMedicine, 384, 989-1002. https://doi.org/10.1056/nejmoa2032183
[79]
Garvey, W.T., Batterham, R.L., Bhatta, M., Buscemi, S., Christensen, L.N., Frias, J.P., et al. (2022) Two-Year Effects of Semaglutide in Adults with Overweight or Obesity: The STEP 5 Trial. NatureMedicine, 28, 2083-2091. https://doi.org/10.1038/s41591-022-02026-4
[80]
Wadden, T.A., Bailey, T.S., Billings, L.K., Davies, M., Frias, J.P., Koroleva, A., et al. (2021) Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults with Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA, 325, 1403-1413. https://doi.org/10.1001/jama.2021.1831
[81]
Davies, M., Færch, L., Jeppesen, O.K., Pakseresht, A., Pedersen, S.D., Perreault, L., et al. (2021) Semaglutide 2∙4 mg Once a Week in Adults with Overweight or Obesity, and Type 2 Diabetes (STEP 2): A Randomised, Double-Blind, Double-Dummy, Placebo-Controlled, Phase 3 Trial. TheLancet, 397, 971-984. https://doi.org/10.1016/s0140-6736(21)00213-0
[82]
Rubino, D., Abrahamsson, N., Davies, M., Hesse, D., Greenway, F.L., Jensen, C., et al. (2021) Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults with Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA, 325, 1414-1425. https://doi.org/10.1001/jama.2021.3224
[83]
Alfaris, N., Waldrop, S., Johnson, V., Boaventura, B., Kendrick, K. and Stanford, F.C. (2024) GLP-1 Single, Dual, and Triple Receptor Agonists for Treating Type 2 Diabetes and Obesity: A Narrative Review. eClinicalMedicine, 75, Article ID: 102782. https://doi.org/10.1016/j.eclinm.2024.102782
[84]
Zhu, Y., Yao, L., Gallo-Ferraz, A.L., Bombassaro, B., Simões, M.R., Abe, I., et al. (2024) Sympathetic Neuropeptide Y Protects from Obesity by Sustaining Thermogenic Fat. Nature, 634, 243-250. https://doi.org/10.1038/s41586-024-07863-6
[85]
Pfeifer, A., Mikhael, M. and Niemann, B. (2024) Inosine: Novel Activator of Brown Adipose Tissue and Energy Homeostasis. TrendsinCellBiology, 34, 72-82. https://doi.org/10.1016/j.tcb.2023.04.007
[86]
Keinan, O., Valentine, J.M., Xiao, H., Mahata, S.K., Reilly, S.M., Abu-Odeh, M., et al. (2021) Glycogen Metabolism Links Glucose Homeostasis to Thermogenesis in Adipocytes. Nature, 599, 296-301. https://doi.org/10.1038/s41586-021-04019-8
[87]
Wang, Q., Li, D., Cao, G., Shi, Q., Zhu, J., Zhang, M., et al. (2021) IL-27 Signalling Promotes Adipocyte Thermogenesis and Energy Expenditure. Nature, 600, 314-318. https://doi.org/10.1038/s41586-021-04127-5