全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis by Numerical Simulation of the Geotechnical Behavior of Mining Slopes under the Influence of the Variations of the Geometric and Mechanical Parameters of the Bench Using RocScience (Slide Module Version 6.020): Case of an Open-Pit Mine

DOI: 10.4236/gep.2025.132017, PP. 275-298

Keywords: Open-Pit Mine, Factor of Safety, Stability, Slope, Bench

Full-Text   Cite this paper   Add to My Lib

Abstract:

Better benches design enables to optimizes the risks of instabilities, to guarantee maximum of the ore recovery with minimum waste stripping. This requires detailed data on their geometric properties and the mechanical properties of the materials (soil and rock), thus defining the appropriate means for investigation, modeling and numerical calculations. The objective of this article is to study the geotechnical behavior of slopes and edges of a mining pit under the influence of variations in the geometric parameters of the bench and mechanical parameters of the ground in the case of open-pit mines. To do this, we used the stability calculation software well adapted to landslide problems, called RocScience (Slide module version 6.020). Four geometric models were tested in order to assess the slopes and the mining pit edges stability, in order to choose the best model for the application of the different parameter’s variation. The stability calculations showed the influence of variations in the geometric parameters of the benches and the mechanical parameters of the soil on the factor of safety. The results of variations in favor of a decrease in the bench height, slope angle and an increase in the bench width show an increase in the factor of safety and vice versa. With the first three models, under static conditions all the factors of safety are greater than or equal to 1.4, which shows a state of satisfactory long-term stability, whereas under Pseudo-static conditions, the factors of safety are all less than 1, which means that collapse is inevitable with these models. It can be seen that with a fourth model whose geometric characteristics, the factors of safety obtained are greater than 1.5 in static conditions and 1 in Pseudo-static conditions, which shows of the slopes and pit edges long-term stability. As for the variations in mechanical parameters, the factor of safety increases with the increase of the mechanical parameters in static and Pseudo-static conditions. The sandstone layer showed inevitable instabilities with values of the internal friction angle below 40? and internal cohesion below 65 KPa. Instabilities are observed in the limestone layer with internal friction angle values below 35? and internal cohesion below 120 KPa. The pegmatite showed a state of guaranteed stability in an interval of the internal friction angle ranging from 30? to 35? and internal cohesion ranging from 250 to 300 KPa outside which instabilities inevitably occur. The variation of the parameters showed a very low effect on the last two

References

[1]  Abderrahmane, H. T. (2020). Chapitre 2: Calcul de la stabilité des pentes, Élément du cours de Centre Universitaire Abdelhafid Boussouf Mila.
https://fr.scribd.com/document/507038994/Chapitre2
[2]  Abderrahmane, H. T., & Abdelmadjid, B. (2014a). Etude par élément finis de l’effet des mouvements imposés sur la stabilité d’un talus. In Les 1ères Rencontres Nationales de Génie Civil (pp. 1-8).
https://www.researchgate.net/publication/296816937_Etude_par_element_finis_de_l'effet_des_mouvements_imposes_sur_la_stabilite_d'un_talus
[3]  Abderrahmane, H. T., & Abdelmadjid, B. (2014b). Evaluation d’un glissement avec comparaison MEL et MEF sous l’étude paramétrique du couplage ‘‘C-’’ et leurs effets sur le facteur de sécurité et la surface de glissement. In Colloque International Caractérisation et Modélisation des Matériaux et Structures (pp. 1-7). Université M. Mammeri de Tizi-Ouzou, Algérie.
[4]  Abramson, L W. (1996). Slope Stability and Stabilization Methods. Wiley.
[5]  Abramson, L. W. (2001). General Slope Stability Concepts. Wiley.
[6]  Aryanti, D. E., Eveny, O. N., Tulus, A., & Saptono, S. (2018). Slope Stability Analysis in Lusi River, Kedungrejo Using Limit Equlibrium Method. IOP Conference Series: Earth and Environmental Science, 212, Article 012034.
https://doi.org/10.1088/1755-1315/212/1/012034
[7]  Bedi, A., & Harisson, J. (2013). Deconding Eurocode. Taylor & Francis.
[8]  Campy, M., & Macaire, J. J. (2003). Géologie de la surface. Erosion, transfert et stockage dans les environnements continentaux [compte-rendu]. Quaternaire, 14, 279-280.
[9]  Cerad (Centre de Recherche et de Développement Appliquée) (2000). Plan d’exploitation du gisement de phosphate de Kef Essnoun, Djebel El Onk, Inédit.
[10]  Cheng, Y., & Lau, C. (2008). Slope Stability Analysis and Stabilization: Nouvelles méthodes et perspectives. Routledge.
https://istasazeh-co.com/pdf/Slope-Stability-Analysis-and-Stabilization.pdf
[11]  Collin, F., Fox, R., Maquil, R., & Schroeder, C. H. (2010). Stabilité des parois rocheuses, Journée Technique, administration des ponts et chaussés de Luxembourg. Centre culturel de Colmar-Berg (Luxembourg).
https://geologie.lu/index.php/actualites/conferences-et-excursions/5-journee-technique-sgbimr-stabilite-des-parois-rocheuses
[12]  Duncan, J. M. (1996). State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. Journal of Geotechnical Engineering, 122, 577-596.
https://doi.org/10.1061/(asce)0733-9410(1996)122:7(577)
[13]  Duncan, W. C., & Christopher, M. W. (2005). Rock Slope Engineering: Civil and Mining (4th ed.). Taylor & Francis e-Library.
[14]  Fassekh (2012). Analyse des paramètres du plan de tir sur la granulométrie des roches abattus cas du Kef es Sennoun de Djbel Onk Bir AL Ater W. Tébessa (pp. 25-30). GROUP SOCIETE DES MINES DE PHOSPHATE SOMIPHOS spa COMPLEXE MINIER DE DJEBEL ONK.
https://repository.enp.edu.dz/jspui/bitstream/123456789/4630/1/FASSEKH.Abed%20El%20Werth.pdf
[15]  Fredj, M., Hafsaoui, A., Khedri, Y., Boukarm, R., Nakache, R., Saadoun, A. et al. (2017). Study of Slope Stability (open Pit Mining, Algeria). In Sustainable Civil Infrastructures (pp. 1-11). Springer International Publishing.
https://doi.org/10.1007/978-3-319-61902-6_1
[16]  Goodman, R. E., & Shi, G. (1985). Block Theory and Its Application to Rock Engineering. Prentice-Hall.
[17]  Harabinova, S., & Panulinova, E. (2017). Assessment of Slope Stability. MATEC Web of Conferences, 107, Article No. 00031.
https://doi.org/10.1051/matecconf/201710700031
[18]  Harish Kumar, K., Rama Krishna, B., & Siva Prasad, T. V. (2020). Cantilever Retaining Wall Using GEO5 Software—A Review. In Proceeding of National Conference on Emerging Trends in Civil Engineering during 26th–27th June (pp. 134-147).
https://www.researchgate.net/publication/344487089_Proceeding_of_National_Conference_on_Emerging_Trends_in_Civil_Engineering_Cantilever_Retaining_Wall_using_GEO5_Software_-A_REVIEW
[19]  Hoek, E. and Bray, J.W. (1981) Rock Slope Engineering. Revised 3rd Edition. The Institution of Mining and Metallurgy, London, 341-351.
https://www.academia.edu/36521616/Rock_Slope_Engineering
[20]  Houcemeddine, G. (2007). Stabilisation des talus renforcés par pieux. Magister Thesis, Université de Batna.
http://eprints.univ-batna2.dz/867/1/gha%20Guerfi%20Houcemeddine.pdf
[21]  Lahmili, A., Ouadif, L., Akhssas, A., & Bahi, L. (2018). Rock Stability Analysis—A Case Study. MATEC Web of Conferences, 149, Article 02072.
https://doi.org/10.1051/matecconf/201814902072
[22]  Lauffer, H. (1958). Gebirgsklassifizierung für den Stollenbau. Geology, 24, 46-51.
[23]  Luc, S. (2018). Éléments de géotechnique: Écoulements, stabilité des pentes, parois de soutènement souples IUT Génie Civil et Construction Durable Module MXG6.
https://hal.science/cel-01784598
[24]  Mathe, L., & Ferentinou, M. (2021). Rock Slope Stability Analysis Adopting Eurocode 7, a Limit State Design Approach for an Open Pit. IOP Conference Series: Earth and Environmental Science, 833, Article 012201.
https://doi.org/10.1088/1755-1315/833/1/012201
[25]  Melouka, S. (2003). Analyse de la stabilité des pentes en terrains meubles. Application du code de calcul «FLAC». University of Abou Bekr Belkaid.
[26]  Mezaini, B., Aissa, M. H., Gadouri, H., & Gadouri, H. (2021). Étude des glissements de terrain à l’aide de données géologiques et géotechniques: Une étude de cas sur le glissement de terrain de Boufhima (Tizi-Ouzou, Algérie). In The First National Conference on Civil Engineering and Environment (pp. 1-10).
https://www.researchgate.net/profile/Hamid-Gadouri/publication/363056154_Etude_des_glissements_de_terrain_a_l'aide_des_donnees_geologiques_et_geotechniques_une_etude_de_cas_sur_le_glissement_de_terrain_de_Boufhima_Tizi-Ouzou_Algerie/links/63a6b8ea03aad5368e372a06/Etude-des-glissements-de-terrain-a-laide-des-donnees-geologiques-et-geotechniques-une-etude-de-cas-sur-le-glissement-de-terrain-de-Boufhima-Tizi-Ouzou-Algerie.pdf
[27]  Mohamed, F. (2019). Etude de la stabilité des talus des Moines à ciel ouvert. Cas de la mine de Phosphate de Djebel El-Onk. Université Badji Mokhtar-Annaba.
[28]  Mohamed, K. (2006). Méthodes d’analyse de la stabilité et techniques de stabilisation des pentes. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur.
https://www.cfmr-roches.org/sites/default/files/jngg/JNGG%202006%20s3%20pp%209-16%20Khemissa.pdf
[29]  Nilsen, B. (2000). New Trends in Rock Slope Stability Analyses. Bulletin of Engineering Geology and the Environment, 58, 173-178.
https://doi.org/10.1007/s100640050072
[30]  Nilsen, B. (2017). Rock Slope Stability Analysis According to Eurocode 7, Discussion of Some Dilemmas with Particular Focus on Limit Equilibrium Analysis. Bulletin of Engineering Geology and the Environment, 76, 1229-1236.
https://doi.org/10.1007/s10064-016-0928-9
[31]  Nomikos, P., & Sofianos, A. (2014). Reliability against Translational Slip of Rock Slopes Designed According to Eurocode 7. In Rock Engineering and Rock Mechanics: Structures in and on Rock Masses (pp. 1487-1492). CRC Press.
https://doi.org/10.1201/b16955-259
[32]  Protodiakonov, M. (1909). Pression des roches sur le soutènement de la mine. Mining Journal, 3, 220-231.
[33]  Read, J. & Stacey, P. (2009). Guidelines for Open Pit Slope Design. CSIRO Publishing.
[34]  Samir, B. (2008). Modélisation et interaction, renforcement sol pour les talus instables, Mémoire Magistère en Génie civil. University of Abou Bekr Belkaid.
https://www.researchgate.net/profile/Samir-Bedr/publication/331383137_MODELISATION_ET_INTERACTION_RENFORCEMENT_SOL_POUR_LES_TALUS_INSTABLES/links/5c76b2f5458515831f7547ce/MODELISATION-ET-INTERACTION-RENFORCEMENT-SOL-POUR-LES-TALUS-INSTABLES.pdf
[35]  Shannon, M. G. (2021). Reliability Assessment of an Open Pit Slope on Bong Iron Ore Mine. Journal of Geoscience and Environment Protection, 9, 31-43.
https://doi.org/10.4236/gep.2021.93003
[36]  Soren, K., Budi, G., & Sen, P. (2014). Stability Analysis of Open Pit Slope by Finite Difference Method. International Journal of Research in Engineering and Technology, 3, 326-334.
https://doi.org/10.15623/ijret.2014.0305062
[37]  Terzaghi, K. (1946). Rock Defects and Loads on Tunnel Supports. In Rock Tunneling with Steel Supports (pp. 17-99). Commercial Shearing and Stamping Company.
[38]  Yingren, Z., Xiaosong, T., Shangyi, Z., Chujian, D., & Wenjie, L. (2009). Strength Reduction and Step-Loading Finite Element Approaches in Geotechnical Engineering. Journal of Rock Mechanics and Geotechnical Engineering, 1, 21-30.
https://doi.org/10.3724/SP.J.1235.2009.00021
[39]  Zhang, Q., Zhang, H., Wang, L., Li, Q., & Yu, H. (2024). Effect of Structural Characteristics on the Stability of Multi-Weak Rock Slopes Considering the Spatial Variability of Geotechnical Parameters. Scientific Reports, 14, Article No. 30618.
https://doi.org/10.1038/s41598-024-82296-9
[40]  Zheng, H., Tham, L. G., & Liu, D. (2006). On Two Definitions of the Factor of Safety Commonly Used in the Finite Element Slope Stability Analysis. Computers and Geotechnics, 33, 188-195.
https://doi.org/10.1016/j.compgeo.2006.03.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133