全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of Soil Erosion Dynamics through Rusle Model in Gilgit Baltistan, Pakistan

DOI: 10.4236/gep.2025.132014, PP. 215-229

Keywords: Gilgit Baltistan, Soil Erosion, Rain Erosivity, Soil Erodibility, GIS, RUSLE

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil integrity and fertility is on high risk due to water erosion, it’s not only disturbed cropping practices but also damages the ecosystem of the land. In this study, the combination of GIS and RUSLE modeling are used to compute average yearly soil erosion rate in Baltistan Division of Gilgit. R, K, LS C & P Factors were computed to determine average Annual Soil Loss (ASL) which came out to be 6.68 tons/hectare/year. Higher altitudes, which are primarily covered in glaciers and watersheds, depicts maximum value of ASL when compared with lower altitude. Study area may witness a rise in soil loss due to soil texture and change in rain pattern (due to climate change). The maps developed during the study can also be referred to develop planning of land management strategy against soil erosion.

References

[1]  Abdul Rahaman, S., Aruchamy, S., Jegankumar, R., & Abdul Ajeez, S. (2015). Estimation of Annual Average Soil Loss, Based on RUSLE Model in Kallar Watershed, Bhavani Basin, Tamil Nadu, India. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2, 207-214.
https://doi.org/10.5194/isprsannals-ii-2-w2-207-2015
[2]  Ansari, A., & Tayfur, G. (2023). Comparative Analysis of Estimation of Slope-Length Gradient (LS) Factor for Entire Afghanistan. Geomatics, Natural Hazards and Risk, 14, Article ID: 2200890.
https://doi.org/10.1080/19475705.2023.2200890
[3]  Azimi Sardari, M. R., Bazrafshan, O., Panagopoulos, T., & Sardooi, E. R. (2019). Modeling the Impact of Climate Change and Land Use Change Scenarios on Soil Erosion at the Minab Dam Watershed. Sustainability, 11, Article 3353.
https://doi.org/10.3390/su11123353
[4]  Bekele, B., & Gemi, Y. (2021). Soil Erosion Risk and Sediment Yield Assessment with Universal Soil Loss Equation and GIS: In Dijo Watershed, Rift Valley Basin of Ethiopia. Modeling Earth Systems and Environment, 7, 273-291.
https://doi.org/10.1007/s40808-020-01017-z
[5]  Belasri, A., & Lakhouili, A. (2016). Estimation of Soil Erosion Risk Using the Universal Soil Loss Equation (USLE) and Geo-Information Technology in Oued El Makhazine Watershed, Morocco. Journal of Geographic Information System, 8, 98-107.
https://doi.org/10.4236/jgis.2016.81010
[6]  Boggs, G., Devonport, C., Evans, K., & Puig, P. (2001). GIS-Based Rapid Assessment of Erosion Risk in a Small Catchment in the Wet/Dry Tropics of Australia. Land Degradation & Development, 12, 417-434.
https://doi.org/10.1002/ldr.457
[7]  Dabral, P. P., Baithuri, N., & Pandey, A. (2008). Soil Erosion Assessment in a Hilly Catchment of North Eastern India Using USLE, GIS and Remote Sensing. Water Resources Management, 22, 1783-1798.
https://doi.org/10.1007/s11269-008-9253-9
[8]  Dissanayake, D., Morimoto, T., & Ranagalage, M. (2019). Accessing the Soil Erosion Rate Based on RUSLE Model for Sustainable Land Use Management: A Case Study of the Kotmale Watershed, Sri Lanka. Modeling Earth Systems and Environment, 5, 291-306.
https://doi.org/10.1007/s40808-018-0534-x
[9]  Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed. International Journal of Remote Sensing, 35, 441-453.
https://doi.org/10.1080/01431161.2013.871081
[10]  Fernandez, C., Wu, J. Q., McCool, D. Q., & Stockle, C. O. (2003). Estimating Water Erosion and Sediment Yield with GIS, RUSLE and SEDD. Journal of Soil and Water Conservation, 58, 128-136.
[11]  Ganasri, B. P., & Ramesh, H. (2016). Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS—A Case Study of Nethravathi Basin. Geoscience Frontiers, 7, 953-961.
https://doi.org/10.1016/j.gsf.2015.10.007
[12]  Gao, J. (2016). Wetland and Its Degradation in the Yellow River Source Zone. In G. J. Brierley, et al. (Eds.), Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone (pp. 209-232). Springer International Publishing.
https://doi.org/10.1007/978-3-319-30475-5_10
[13]  Gitas, I. Z., Douros, K., Minakou, C., Silleos, G. N., & Karydas, C. G. (2009). Multi-Temporal Soil Erosion Risk Assessment in N. Chalkidiki Using a Modified USLE Raster Model. EARSeL eProceedings, 8, 40-52.
http://www.eproceedings.org/static/vol08_1/08_1_gitas1.pdf
[14]  Gupta, S., & Kumar, S. (2017). Simulating Climate Change Impact on Soil Erosion Using RUSLE Model—A Case Study in a Watershed of Mid-Himalayan Landscape. Journal of Earth System Science, 126, Article No. 43.
https://doi.org/10.1007/s12040-017-0823-1
[15]  Isikwue, M., Ocheme, J., & Aho, M. (2015). Evaluation of Rainfall Erosivity Index for Abuja, Nigeria Using Lombardi Method. Nigerian Journal of Technology, 34, Article No. 56.
https://doi.org/10.4314/njt.v34i1.7
[16]  Jain, S. K., Kumar, S., & Varghese, J. (2001). Estimation of Soil Erosion for a Himalayan Watershed Using GIS Technique. Water Resources Management, 15, 41-54.
https://doi.org/10.1023/a:1012246029263
[17]  Joshi, P., Adhikari, R., Bhandari, R., Shrestha, B., Shrestha, N., Chhetri, S. et al. (2023). Himalayan Watersheds in Nepal Record High Soil Erosion Rates Estimated Using the RUSLE Model and Experimental Erosion Plots. Heliyon, 9, e15800.
https://doi.org/10.1016/j.heliyon.2023.e15800
[18]  Khan, A., Rahman, A., & Mahmood, S. (2023). Spatial Estimation of Soil Erosion Risk Using RUSLE Model in District Swat, Eastern Hindu Kush, Pakistan. Journal of Water and Climate Change, 14, 1881-1899.
https://doi.org/10.2166/wcc.2023.495
[19]  Kim, H. S., & Julien Pierre, Y. (2006). Soil Erosion Modeling Using RUSLE and GIS on the IMHA Watershed. Water Engineering Research, 7, 29-41.
[20]  Milentijević, N., Ostojić, M., Fekete, R., Kalkan, K., Ristić, D., Bačević, N. et al. (2021). Assessment of Soil Erosion Rates Using Revised Universal Soil Loss Equation (RUSLE) and GIS in Bačka (Serbia). Polish Journal of Environmental Studies, 30, 5175-5184.
https://doi.org/10.15244/pjoes/135617
[21]  Moore, I. D., & Burch, G. J. (1986). Physical Basis of the Length‐Slope Factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50, 1294-1298.
https://doi.org/10.2136/sssaj1986.03615995005000050042x
[22]  Nord, G., & Esteves, M. (2005). PSEM_2D: A Physically Based Model of Erosion Processes at the Plot Scale. Water Resources Research, 41, W08407.
https://doi.org/10.1029/2004wr003690
[23]  Prasannakumar, V., Vijith, H., Abinod, S., & Geetha, N. (2012). Estimation of Soil Erosion Risk within a Small Mountainous Sub-Watershed in Kerala, India, Using Revised Universal Soil Loss Equation (RUSLE) and Geo-Information Technology. Geoscience Frontiers, 3, 209-215.
https://doi.org/10.1016/j.gsf.2011.11.003
[24]  Renard, K. G. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Agricultural Research Service.
[25]  Renard, K. G., & Ferreira, V. A. (1993). RUSLE Model Description and Database Sensitivity. Journal of Environmental Quality, 22, 458-466.
https://doi.org/10.2134/jeq1993.00472425002200030009x
[26]  Renard, K. G., Lane, L. J., Simanton, J. R., Emmerich, W. E., Stone, J. J., Weltz, M. A., & Yakowitz, D. S. (1993). Agricultural Impacts in an Arid Environment: Walnut Gulch Studies. Hydrological Science and Technology, 9, 145-190.
[27]  Schuol, J., Abbaspour, K. C., Srinivasan, R., & Yang, H. (2008). Estimation of Freshwater Availability in the West African Sub-Continent Using the SWAT Hydrologic Model. Journal of Hydrology, 352, 30-49.
https://doi.org/10.1016/j.jhydrol.2007.12.025
[28]  Shinde, V., Tiwari, K. N., & Singh, M. (2010). Prioritization of Micro Watersheds on the Basis of Soil Erosion Hazard Using Remote Sensing and Geographic Information System. International Journal of Water Resources and Environmental Engineering, 2, 130-136.
[29]  Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, S., Ferrat, M., Haughey, E., Luz, S., Pathak, M., Petzold, J., Pereira, J. P., Vyas, P., Huntley, E., Kissick, K., & Malley, J. (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems.
https://philpapers.org/rec/SHUCCA-2
[30]  Sidi Almouctar, M. A., Wu, Y., Zhao, F., & Dossou, J. F. (2021). Soil Erosion Assessment Using the RUSLE Model and Geospatial Techniques (Remote Sensing and GIS) in South-Central Niger (Maradi Region). Water, 13, Article No. 3511.
https://doi.org/10.3390/w13243511
[31]  Van Remortel, R. D., Hamilton, M. E., & Hickey, R. J. (2001). Estimating the LS Factor for RUSLE through Iterative Slope Length Processing of Digital Elevation Data within Arclnfo Grid. Cartography, 30, 27-35.
https://doi.org/10.1080/00690805.2001.9714133
[32]  Waseem, M., Iqbal, F., Humayun, M., Umais Latif, M., Javed, T., & Kebede Leta, M. (2023). Spatial Assessment of Soil Erosion Risk Using RUSLE Embedded in GIS Environment: A Case Study of Jhelum River Watershed. Applied Sciences, 13, Article No. 3775.
https://doi.org/10.3390/app13063775
[33]  Wischmeier, W. H., & Smith, D. D. (1978). Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (No. 537). Department of Agriculture, Science and Education Administration.
[34]  Xu, Y.-Q., Peng, J., & Shao, X.-M. (2008). Retracted Article: Assessment of Soil Erosion Using RUSLE and GIS: A Case Study of the Maotiao River Watershed, Guizhou Province, China. Environmental Geology, 56, 1643-1652.
https://doi.org/10.1007/s00254-008-1261-9
[35]  Zhou, P., Ge, Y., Jiang, Y., Xie, Y., Si, Z., Yang, H., Huo, H.-Y., Yu, J., & Wei, G. (2020). Assessment of Soil Erosion by the RUSLE Model Using Remote Sensing and GIS: A Case Study of Jilin Province of China.
https://doi.org/10.20944/preprints202011.0435.v1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133