Chemical fertilizers are a source of soil degradation. In order to mitigate soil degradation and to face the negative impacts of climate change, the use of organic fertilizers, accessible to small farmers can maintain the productivity of cereals including rice. The objective of this experiment is to study the effect of organo-mineral fertilizers on soil chemical properties, growth and physiology parameters and yield of rice. For this purpose, a completely randomized block design with three replications was adopted. Different organic (Fertinova, Organova and Fertinova + Organova) and mineral (NPK + Urea) fertilizers were applied to cultivate the NERICA L19 variety of rice. The soil chemical properties (pH), germination rate, growth, yield and physiological (chlorophyll content) parameters were assessed. The results revealed a germination rate of the grains varying between 87.5 and 100%. Fertinova and Fertinova + Organova had the highest germination rates. Soil pH decreased significantly from initial (6.71 ± 0.01) to final (5.73 ± 0.04) with the development cycle of the rice. Organo-mineral fertilizers influenced significantly (p = 5.36e?09) soil chemical properties by increasing pH (4%) compared to Control. Analysis of variance on growth and yield parameters, yield and chlorophyll content revealed a significant difference (p < 0.05) between fertilizers. Growth and yield parameters and yield were significantly higher in NPK and Fertinova + Organova than in Fertinova, Organova and Control. For the biomass the NPK + Urea recorded significantly highest biomass (488.28 ± 60.83 g). Leaves chlorophyll content varied significantly according to the daytime and the status of leaf development. The higher chlorophyll content was recorded at noon (27.96 ± 0.32 SPAD value) and with young leaves (30.21 ± 0.35 SPAD value). NPK + Urea (29.36 ± 0.45 SPAD value) and Fertinova (27.78 ± 0.40 SPAD value) favored more chlorophyll content in the rice leaves. Rice performed better in NPK + Urea and Fertinova + Organova fertilizers.
References
[1]
Otsuka, K., Mano, Y. and Takahashi, K. (2023) The Rice Green Revolution in Sub-Saharan Africa: Issues and Opportunities. In: Otsuka, K., Mano, Y. and Takahashi, K., Eds., Rice Green Revolution in Sub-Saharan Africa, Springer, 3-24. https://doi.org/10.1007/978-981-19-8046-6_1
FAO (2010) The Rice Crisis. Markets, Policies and Food Security. In: Dawe, D., Ed., Food and Agriculture Organization and Earthscan, WHO, 133.
[4]
Diagne, M., Demont, M., Seck, P.A. and Diaw, A. (2012) Self-Sufficiency Policy and Irrigated Rice Productivity in the Senegal River Valley. Food Security, 5, 55-68. https://doi.org/10.1007/s12571-012-0229-5
[5]
MAER (2021) Ministère de l’Agriculture et de l’Equipement Rural. Programme National D’autosuffisance en Riz (PNAR). https://agriculture.gouv.sn/projets-programmes/programme-national-dautosuffisance-en-riz-pnar/
[6]
Goulding, K., Jarvis, S. and Whitmore, A. (2007) Optimizing Nutrient Management for Farm Systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 667-680. https://doi.org/10.1098/rstb.2007.2177
[7]
Mahajan, A., Bhagat, R.M. and Gupta, R.D. (2008) Integrated Nutrient Management in Sustainable Rice Wheat Cropping System for Food Security in India. SAARC Journal of Agriculture, 6, 29-32.
[8]
Sathish, A., Govinda Gowda, V., Chandrappa, H. and Nagaraja, K. (2011) Long Term Effect of Integrated Use of Organic and Inorganic Fertilizers on Productivity, Soil Fertility and Uptake of Nutrients in Rice & Maize Cropping System. https://www.semanticscholar.org/paper/LONG-TERM-EFFECT-OF-INTEGRATED-USE-OF-ORGANIC-AND-%26-Sathish-Gowda/a42f584ec0ef9a7c948e8e08ff7bab6a1766f98e
[9]
Joshi, N.V., Vesey, A.T., Williams, M.C., Shah, A.S.V., Calvert, P.A., Craighead, F.H.M., et al. (2014) 18F-Fluoride Positron Emission Tomography for Identification of Ruptured and High-Risk Coronary Atherosclerotic Plaques: A Prospective Clinical Trial. The Lancet, 383, 705-713. https://doi.org/10.1016/s0140-6736(13)61754-7
[10]
Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., et al. (2012) Enhanced Top Soil Carbon Stocks under Organic Farming. Proceedings of the National Academy of Sciences of the United States of America, 109, 18226-18231. https://doi.org/10.1073/pnas.1209429109
[11]
Zeiger, M. and Fohrer, N. (2009) Impact of Organic Farming Systems on Runoff Formation Processes—A Long-Term Sequential Rainfall Experiment. Soil and Tillage Research, 102, 45-54. https://doi.org/10.1016/j.still.2008.07.024
[12]
Lorenz, K. and Lal, R. (2016) Environmental Impact of Organic Agriculture. Advances in Agronomy, 139, 99-152. https://doi.org/10.1016/bs.agron.2016.05.003
[13]
Campbell, S.G. and Campbell, K.S. (2011) Mechanisms of Residual Force Enhancement in Skeletal Muscle: Insights from Experiments and Mathematical Models. Biophysical Reviews, 3, 199-207. https://doi.org/10.1007/s12551-011-0059-2
[14]
Muthayya, S., Sugimoto, J.D., Montgomery, S. and Maberly, G.F. (2014) An Overview of Global Rice Production, Supply, Trade, and Consumption. Annals of the New York Academy of Sciences, 1324, 7-14. https://doi.org/10.1111/nyas.12540
[15]
Dossou-Yovo, E.R., Vandamme, E., Dieng, I., Johnson, J. and Saito, K. (2020) Decomposing Rice Yield Gaps into Efficiency, Resource and Technology Yield Gaps in Sub-Saharan Africa. Field Crops Research, 258, Article ID: 107963. https://doi.org/10.1016/j.fcr.2020.107963
[16]
Fall, A.A. (2016) Synthèse des études sur l’état des lieux chaine de valeur riz en Afrique de l’ouest: Bénin, Burkina Faso, Mali, Niger et Sénégal. Rapport Final, ROPPA, 83.
[17]
Sagna, P. (2005) Dynamique du climat et son évolution récente dans la partie ouest de l’Afrique occidentale. Master’s Thesis, Université Cheikh Anta Diop de Dakar.
[18]
Akassimadou, F.E., Hien, M.P., Bouadou Oi, F.B., Bolou Bi, E.B., Bongoua, J.A., Ettien, J.D., et al. (2017) Efficiences Des Nutriments P Et K En Riziculture Irriguée Dans Un Bas-Fond Secondaire En Zone De Savane Guinéenne De La Côte d’Ivoire. European Scientific Journal, ESJ, 13, 432-453. https://doi.org/10.19044/esj.2017.v13n36p432
[19]
Sié, M. (2008) Biodiversité et amélioration génétique du riz en Afrique subsaharienne. Agropolis International.
[20]
Coulibaly, A., Ouédraogo, J., Nacro, S.R. and Serme, I. (2022) Effets des fertilisants organiques sur la production de la tomate et les paramètres chimiques du sol au Centre Nord du Burkina Faso. Afrique Science, 21, 10-27.
[21]
Vidotto, F. and Ferrero, A. (2000) Germination Behaviour of Red Rice (Oryza sativa L.) Seeds in Field and Laboratory Conditions. Agronomie, 20, 375-382. https://doi.org/10.1051/agro:2000134
[22]
Kabuyaya, D. (2001) Le Protocole «PRERP». La mise en place d’un essai et la collecte des données. Coopération Agricole Italienne à la RDC, At. C/PNR, Kinshasa.
[23]
Lacharme, M. (2001) Le plant de riz Données morphologiques et cycle de la plante. Mémento Technique de Riziculture, 22.
[24]
Team, R.C. (2015) R: A Language and Environment for Statistical Computing. R Foundationfor Statistical Computing. https://www.R-project.org
[25]
Ognalaga, M., Odjogui, P.I.O., Lekambou, J.M. and Poligui, R.N. (2016) Effet des écumes de canne à sucre, de la poudre et du compost à base de Chromolaena odorata (L.) King R.M. & H.E. Rob sur la croissance de l’oseille de Guinée (Hibiscus sabdariffa L.). International Journal of Biological and Chemical Sciences, 9, 2507-2519. https://doi.org/10.4314/ijbcs.v9i5.22
[26]
Yameogo, P.L., Traore, A. and Arzouma, B.A. (2021) Influence des modes de gestion de l’eau et de la fumure minérale sur quelques paramètres chimiques du sol et le rendement du riz à la Vallée du Kou au Burkina Faso. Journal of Applied Biosciences, 165, 17099-17110.
[27]
Walker, B., Holling, C.S., Carpenter, S.R. and Kinzig, A.P. (2004) Resilience, Adaptability and Transformability in Social-Ecological Systems. Ecology and Society, 9, Article 5. https://doi.org/10.5751/es-00650-090205
[28]
Badiane, A., Faye, B.A., Sambou, A., Ba, I., Diop, K., Diallo, M., et al. (2023) Cultural Mode and Organo-Mineral Amendment Effect on Growth and Yield of Rice (Oryza sativa L.) and Soil Chemical Properties in Sulfated Acid Soils of Basse-Casamance. Heliyon, 9, e18830. https://doi.org/10.1016/j.heliyon.2023.e18830
[29]
Bamba, B., Coly, I. and Guèye, M. (2022) Effects of Organo-Mineral Fertilization on Plant Growth and Grain Yield of an Upland Rice Variety (NERICA 14) in Lower Casamance (South-West Senegal). International Journal of Scientific Research Updates, 4, 303-311.
[30]
Song, W., Shu, A., Liu, J., Shi, W., Li, M., Zhang, W., et al. (2022) Effects of Long-Term Fertilization with Different Substitution Ratios of Organic Fertilizer on Paddy Soil. Pedosphere, 32, 637-648. https://doi.org/10.1016/s1002-0160(21)60047-4
[31]
Bayu, T. (2020) Review on Contribution of Integrated Soil Fertility Management for Climate Change Mitigation and Agricultural Sustainability. Cogent Environmental Science, 6, Article ID: 1823631. https://doi.org/10.1080/23311843.2020.1823631
[32]
Diouf, S. and Sambou, A. (2023) Agro-Morphological Characterization of Four Varieties of Cucumber from Cucumis sativus L. and Cucumis metuliferus E. Mey. Ex Naudin in Senegal. Journal of Horticulture and Postharvest Research, 6, 131-144.
[33]
Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O. and Onoda, Y. (2005) Temperature Acclimation of Photosynthesis: Mechanisms Involved in the Changes in Temperature Dependence of Photosynthetic Rate. Journal of Experimental Botany, 57, 291-302. https://doi.org/10.1093/jxb/erj049
[34]
Hidayati, N., Triadiati, and Anas, I. (2016) Photosynthesis and Transpiration Rates of Rice Cultivated under the System of Rice Intensification and the Effects on Growth and Yield. HAYATI Journal of Biosciences, 23, 67-72. https://doi.org/10.1016/j.hjb.2016.06.002