全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶非线性系统的预定时间滑模追踪控制
Prescribed-Time Sliding Mode Tracking Control for a Fractional-Order Nonlinear System

DOI: 10.12677/pm.2025.152048, PP. 79-88

Keywords: 分数阶非线性系统,滑模控制,预定时间收敛,追踪控制
Fractional-Order Nonlinear System
, Sliding Mode Control, Prescribed-Time Convergence, Tracking Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在设计一种针对高维分数阶非线性系统的滑模追踪控制器,使得系统输出在预定时间内收敛到给定的期望轨迹上。首先,为了便于滑模面的设计,本文利用传统的高阶滑模控制的方法,将复杂系统转化为更为简单的链式系统。然后,将传统的整数阶固定时间滑模控制策略进行改进,设计了两种分数阶滑模面,使其改进的滑模控制方法能够适用于分数阶系统。通过对滑模面的求导和利用Lyapunov稳定性定理,最终所设计的两类分数阶滑模控制器能够使系统的输出在预定时间内追踪上期望轨迹,与传统的固定时间滑模策略相比,该方法可以随意控制系统的最大收敛时间,因而控制效果更优。最后,两个仿真结果证明了这两类控制策略的可行性和有效性。
This research is dedicated to designing a sliding mode tracking controller for high-dimensional fractional-order nonlinear systems, with the objective of making the system output converge to a given desired trajectory within a prescribed-time. In order to facilitate the design of the sliding mode surface, this paper uses the traditional high-order sliding mode control method to transform the complex system into a simpler chained-form system. Subsequently, this paper modifies the traditional integer-order fixed-time sliding-mode control strategy and designs two types of fractional-order sliding mode surfaces, so that the improved sliding-mode control approach can be applied to fractional-order systems. By differentiating the sliding mode surface and leveraging the Lyapunov stability theorem, the two classes of fractional-order sliding mode controllers designed can ensure that the system output tracks the desired trajectory within the prescribed-time. Compared with the traditional fixed-time sliding mode strategy, the proposed method has a significant advantage in that it can freely control the maximum convergence time of the system. Finally, two simulation results demonstrate the feasibility and effectiveness of these two types of control strategies.

References

[1]  Chen, Y., Wei, Y., Zhong, H. and Wang, Y. (2016) Sliding Mode Control with a Second-Order Switching Law for a Class of Nonlinear Fractional Order Systems. Nonlinear Dynamics, 85, 633-643.
https://doi.org/10.1007/s11071-016-2712-6
[2]  Hou, Q., Ding, S., Yu, X. and Mei, K. (2022) A Super-Twisting-Like Fractional Controller for SPMSM Drive System. IEEE Transactions on Industrial Electronics, 69, 9376-9384.
https://doi.org/10.1109/tie.2021.3116585
[3]  Pouzesh, M. and Mobayen, S. (2022) Event-Triggered Fractional-Order Sliding Mode Control Technique for Stabilization of Disturbed Quadrotor Unmanned Aerial Vehicles. Aerospace Science and Technology, 121, Article ID: 107337.
https://doi.org/10.1016/j.ast.2022.107337
[4]  Huang, S., Wang, J., Huang, C., Zhou, L., Xiong, L., Liu, J., et al. (2022) A Fixed-Time Fractional-Order Sliding Mode Control Strategy for Power Quality Enhancement of PMSG Wind Turbine. International Journal of Electrical Power & Energy Systems, 134, Article ID: 107354.
https://doi.org/10.1016/j.ijepes.2021.107354
[5]  Huang, S., Wang, J., Xiong, L., Liu, J., Li, P. and Wang, Z. (2022) Distributed Predefined-Time Fractional-Order Sliding Mode Control for Power System with Prescribed Tracking Performance. IEEE Transactions on Power Systems, 37, 2233-2246.
https://doi.org/10.1109/tpwrs.2021.3117126
[6]  Moulay, E., Lechappe, V., Bernuau, E. and Plestan, F. (2022) Robust Fixed-Time Stability: Application to Sliding-Mode Control. IEEE Transactions on Automatic Control, 67, 1061-1066.
https://doi.org/10.1109/tac.2021.3069667
[7]  Tang, W.Q. and Cai, Y.L. (2011) High‐Order Sliding Mode Control Design Based on Adaptive Terminal Sliding Mode. International Journal of Robust and Nonlinear Control, 23, 149-166.
https://doi.org/10.1002/rnc.1820
[8]  Ding, S., Park, J.H. and Chen, C. (2020) Second-Order Sliding Mode Controller Design with Output Constraint. Automatica, 112, Article ID: 108704.
https://doi.org/10.1016/j.automatica.2019.108704
[9]  Kaplan, O. and Bodur, F. (2022) Second-Order Sliding Mode Controller Design of Buck Converter with Constant Power Load. International Journal of Control, 96, 1210-1226.
https://doi.org/10.1080/00207179.2022.2037718
[10]  Liu, L., Zheng, W.X. and Ding, S. (2020) High-Order Sliding Mode Controller Design Subject to Lower-Triangular Nonlinearity and Its Application to Robotic System. Journal of the Franklin Institute, 357, 10367-10386.
https://doi.org/10.1016/j.jfranklin.2020.08.013
[11]  Ni, J., Liu, L., Liu, C., Hu, X. and Li, S. (2017) Fast Fixed-Time Nonsingular Terminal Sliding Mode Control and Its Application to Chaos Suppression in Power System. IEEE Transactions on Circuits and Systems II: Express Briefs, 64, 151-155.
https://doi.org/10.1109/tcsii.2016.2551539
[12]  Krishnamurthy, P., Khorrami, F. and Krstic, M. (2020) A Dynamic High-Gain Design for Prescribed-Time Regulation of Nonlinear Systems. Automatica, 115, Article ID: 108860.
https://doi.org/10.1016/j.automatica.2020.108860
[13]  Zhou, B. and Shi, Y. (2021) Prescribed-Time Stabilization of a Class of Nonlinear Systems by Linear Time-Varying Feedback. IEEE Transactions on Automatic Control, 66, 6123-6130.
https://doi.org/10.1109/tac.2021.3061645
[14]  Ni, J., Liu, L., Liu, C. and Hu, X. (2017) Fractional Order Fixed-Time Nonsingular Terminal Sliding Mode Synchronization and Control of Fractional Order Chaotic Systems. Nonlinear Dynamics, 89, 2065-2083.
https://doi.org/10.1007/s11071-017-3570-6
[15]  Binazadeh, T. (2016) Finite-Time Tracker Design for Uncertain Nonlinear Fractional-Order Systems. Journal of Computational and Nonlinear Dynamics, 11, Article ID: 041028.
[16]  Polyakov, A. (2012) Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems. IEEE Transactions on Automatic Control, 57, 2106-2110.
https://doi.org/10.1109/tac.2011.2179869
[17]  Ding, C., Ding, S. and Mei, K. (2024) Adaptive Prescribed-Time SOSM Controller Design for Nonlinear Systems with Prescribed Performance. IEEE Transactions on Circuits and Systems II: Express Briefs, 71, 1311-1315.
https://doi.org/10.1109/tcsii.2023.3323661
[18]  Aghababa, M.P. (2014) Chaotic Behavior in Fractional-Order Horizontal Platform Systems and Its Suppression Using a Fractional Finite-Time Control Strategy. Journal of Mechanical Science and Technology, 28, 1875-1880.
https://doi.org/10.1007/s12206-014-0334-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133