全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

神经递质与多囊卵巢综合征的研究进展
Research Progress on Neurotransmitters and Polycystic Ovary Syndrome

DOI: 10.12677/jcpm.2025.41077, PP. 527-535

Keywords: 多囊卵巢综合征,神经递质,神经内分泌
Polycystic Ovary Syndrome (PCOS)
, Neurotransmitter, Neuroendocrine

Full-Text   Cite this paper   Add to My Lib

Abstract:

多囊卵巢综合征(Polycystic Ovary Syndrome, PCOS)是妇产科最常见的内分泌疾病之一。患有PCOS的女性往往伴有代谢综合征、2型糖尿病、心血管疾病和子宫内膜癌等疾病。对PCOS发病机制以及新的治疗方法的探寻工作仍在进行中。本综述提示了神经递质在PCOS发病机制中的重要地位,并总结了其在PCOS疾病诊断与治疗中的作用。
Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrine disorders in women’s health. Individuals with PCOS frequently exhibit comorbidities including metabolic syndrome, type 2 diabetes mellitus, cardiovascular disease, and an increased risk of endometrial cancer. Research into the etiology and innovative therapeutic approaches for PCOS remains ongoing. This review elucidates the significant role of neurotransmitters in the pathophysiology of PCOS and provides a comprehensive summary of their implications in the diagnosis and management of this condition.

References

[1]  Choudhari, R., Tayade, S., Tiwari, A. and Satone, P. (2024) Diagnosis, Management, and Associated Comorbidities of Polycystic Ovary Syndrome: A Narrative Review. Cureus, 16, e58733.
https://doi.org/10.7759/cureus.58733

[2]  Ikram, M.A., Kieboom, B.C.T., Brouwer, W.P., Brusselle, G., Chaker, L., Ghanbari, M., et al. (2024) The Rotterdam Study. Design Update and Major Findings between 2020 and 2024. European Journal of Epidemiology, 39, 183-206.
https://doi.org/10.1007/s10654-023-01094-1

[3]  Zhao, H., Zhang, J., Cheng, X., Nie, X. and He, B. (2023) Insulin Resistance in Polycystic Ovary Syndrome across Various Tissues: An Updated Review of Pathogenesis, Evaluation, and Treatment. Journal of Ovarian Research, 16, Article No. 9.
https://doi.org/10.1186/s13048-022-01091-0

[4]  Stener-Victorin, E. and Deng, Q. (2021) Epigenetic Inheritance of Polycystic Ovary Syndrome—Challenges and Opportunities for Treatment. Nature Reviews Endocrinology, 17, 521-533.
https://doi.org/10.1038/s41574-021-00517-x

[5]  Kirtana, A. and Seetharaman, B. (2022) Comprehending the Role of Endocrine Disruptors in Inducing Epigenetic Toxicity. Endocrine, Metabolic & Immune DisordersDrug Targets, 22, 1059-1072.
https://doi.org/10.2174/1871530322666220411082656

[6]  Dai, M., Hong, L., Yin, T. and Liu, S. (2024) Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology, 165, bqae023.
https://doi.org/10.1210/endocr/bqae023

[7]  Matsuyama, S., Whiteside, S. and Li, S. (2024) Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. International Journal of Molecular Sciences, 25, Article No. 1203.
https://doi.org/10.3390/ijms25021203

[8]  Knobil, E. (1980) The Neuroendocrine Control of the Menstrual Cycle. In: Proceedings of the 1979 Laurentian Hormone Conference, Elsevier, 53-88.
https://doi.org/10.1016/b978-0-12-571136-4.50008-5

[9]  Garg, A., Patel, B., Abbara, A. and Dhillo, W.S. (2022) Treatments Targeting Neuroendocrine Dysfunction in Polycystic Ovary Syndrome (PCOS). Clinical Endocrinology, 97, 156-164.
https://doi.org/10.1111/cen.14704

[10]  Blank, S.K., McCartney, C.R., Chhabra, S., Helm, K.D., Eagleson, C.A., Chang, R.J., et al. (2009) Modulation of Gonadotropin-Releasing Hormone Pulse Generator Sensitivity to Progesterone Inhibition in Hyperandrogenic Adolescent Girls—Implications for Regulation of Pubertal Maturation. The Journal of Clinical Endocrinology & Metabolism, 94, 2360-2366.
https://doi.org/10.1210/jc.2008-2606

[11]  Szeliga, A., Rudnicka, E., Maciejewska-Jeske, M., Kucharski, M., Kostrzak, A., Hajbos, M., et al. (2022) Neuroendocrine Determinants of Polycystic Ovary Syndrome. International Journal of Environmental Research and Public Health, 19, Article No. 3089.
https://doi.org/10.3390/ijerph19053089

[12]  Teede, H.J., Tay, C.T., Laven, J.J.E., et al. (2023) Recommendations from the 2023 International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. European Journal of Endocrinology, 189, G43-G64.
[13]  Fiorentino, G., Cimadomo, D., Innocenti, F., Soscia, D., Vaiarelli, A., Ubaldi, F.M., et al. (2022) Biomechanical Forces and Signals Operating in the Ovary during Folliculogenesis and Their Dysregulation: Implications for Fertility. Human Reproduction Update, 29, 1-23.
https://doi.org/10.1093/humupd/dmac031

[14]  Nagae, M., Uenoyama, Y., Okamoto, S., Tsuchida, H., Ikegami, K., Goto, T., et al. (2021) Direct Evidence That KNDy Neurons Maintain Gonadotropin Pulses and Folliculogenesis as the Gnrh Pulse Generator. Proceedings of the National Academy of Sciences, 118, e2009156118.
https://doi.org/10.1073/pnas.2009156118

[15]  Goodman, R.L., Herbison, A.E., Lehman, M.N. and Navarro, V.M. (2022) Neuroendocrine Control of Gonadotropin‐releasing Hormone: Pulsatile and Surge Modes of Secretion. Journal of Neuroendocrinology, 34, e13094.
https://doi.org/10.1111/jne.13094

[16]  de Croft, S., Boehm, U. and Herbison, A.E. (2013) Neurokinin B Activates Arcuate Kisspeptin Neurons through Multiple Tachykinin Receptors in the Male Mouse. Endocrinology, 154, 2750-2760.
https://doi.org/10.1210/en.2013-1231

[17]  Xie, Q., Kang, Y., Zhang, C., Xie, Y., Wang, C., Liu, J., et al. (2022) The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction. Frontiers in Endocrinology (Lausanne), 13, Article ID: 925206.
https://doi.org/10.3389/fendo.2022.925206

[18]  Terasawa, E. (2018) Neuroestradiol in Regulation of Gnrh Release. Hormones and Behavior, 104, 138-145.
https://doi.org/10.1016/j.yhbeh.2018.04.003

[19]  Singh, S., Pal, N., Shubham, S., Sarma, D.K., Verma, V., Marotta, F., et al. (2023) Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. Journal of Clinical Medicine, 12, Article No. 1454.
https://doi.org/10.3390/jcm12041454

[20]  Kawwass, J.F., Sanders, K.M., Loucks, T.L., Rohan, L.C. and Berga, S.L. (2017) Increased Cerebrospinal Fluid Levels of GABA, Testosterone and Estradiol in Women with Polycystic Ovary Syndrome. Human Reproduction, 32, 1450-1456.
https://doi.org/10.1093/humrep/dex086

[21]  Ruddenklau, A. and Campbell, R.E. (2019) Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology, 160, 2230-2242.
https://doi.org/10.1210/en.2019-00428

[22]  Chaudhari, N., Dawalbhakta, M. and Nampoothiri, L. (2018) GnRH Dysregulation in Polycystic Ovarian Syndrome (PCOS) Is a Manifestation of an Altered Neurotransmitter Profile. Reproductive Biology and Endocrinology, 16, Article No. 37.
https://doi.org/10.1186/s12958-018-0354-x

[23]  Akintoye, O.O., Owoyele, B.V., Fabunmi, O.A., Raimi, T.H., Oniyide, A.A., Akintoye, A.O., et al. (2020) Diabetic Neuropathy Is Associated with Increased Pain Perception, Low Serum Beta-Endorphin and Increase Insulin Resistance among Nigerian Cohorts in Ekiti State. Heliyon, 6, e04377.
https://doi.org/10.1016/j.heliyon.2020.e04377

[24]  Choubey, A., Girdhar, K., Kar, A.K., Kushwaha, S., Yadav, M.K., Ghosh, D., et al. (2020) Low-Dose Naltrexone Rescues Inflammation and Insulin Resistance Associated with Hyperinsulinemia. Journal of Biological Chemistry, 295, 16359-16369.
https://doi.org/10.1074/jbc.ra120.013484

[25]  Kiałka, M., Milewicz, T., Spałkowska, M., Krzyczkowska-Sendrakowska, M., Wasyl, B., Pełka, A., et al. (2016) Β-endorphins Plasma Level Is Higher in Lean Polycystic Ovary Syndrome (PCOS) Women. Experimental and Clinical Endocrinology & Diabetes, 124, 55-60.
https://doi.org/10.1055/s-0035-1564094

[26]  Ahmed, M.I., Duleba, A.J., El Shahat, O., Ibrahim, M.E. and Salem, A. (2008) Naltrexone Treatment in Clomiphene Resistant Women with Polycystic Ovary Syndrome. Human Reproduction, 23, 2564-2569.
https://doi.org/10.1093/humrep/den273

[27]  Yu, Y., Chen, T., Zheng, Z., Jia, F., Liao, Y., Ren, Y., et al. (2024) The Role of the Autonomic Nervous System in Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article ID: 1295061.
https://doi.org/10.3389/fendo.2023.1295061

[28]  Linares, R., Hernández, D., Morán, C., Chavira, R., Cárdenas, M., Domínguez, R., et al. (2013) Unilateral or Bilateral Vagotomy Induces Ovulation in Both Ovaries of Rats with Polycystic Ovarian Syndrome. Reproductive Biology and Endocrinology, 11, Article No. 68.
https://doi.org/10.1186/1477-7827-11-68

[29]  Linares, R., Acuña, X.N., Rosas, G., Vieyra, E., Ramírez, D.A., Chaparro, A., et al. (2021) Participation of the Cholinergic System in the Development of Polycystic Ovary Syndrome. Molecules, 26, Article No. 5506.
https://doi.org/10.3390/molecules26185506

[30]  Saad, M.A., Rastanawi, A.A., El-Sahar, A.E. and A. Z. El-Bahy, A. (2025) Ascorbic Acid Mitigates Behavioural Disturbances Associated with Letrozole-Induced PCOS via Switching-Off JAK2/STAT5 and JAK2/ERK1/2 Pathways in Rat Hippocampus. Steroids, 213, Article ID: 109528.
https://doi.org/10.1016/j.steroids.2024.109528

[31]  Vieyra-Valdez, E., Linares-Culebro, R., Rosas-Gavilán, G., Ramírez-Hernández, D., Domínguez-Casalá, R. and Morales-Ledesma, L. (2020) Roles of the Cholinergic System and Vagal Innervation in the Regulation of GnRH Secretion and Ovulation: Experimental Evidence. Brain Research Bulletin, 165, 129-138.
https://doi.org/10.1016/j.brainresbull.2020.09.009

[32]  Zhang, C., Liu, S., Liu, G., He, Y., Wang, Y. and Wang, F. (2020) β-Edorphin Predict Pregnancy Outcome of PCOS and DOR Women after IVF-ET. Archives of Gynecology and Obstetrics, 303, 1207-1216.
https://doi.org/10.1007/s00404-020-05899-3

[33]  Gao, L., Zhao, Y., Wu, H., Lin, X., Guo, F., Li, J., et al. (2023) Polycystic Ovary Syndrome Fuels Cardiovascular Inflammation and Aggravates Ischemic Cardiac Injury. Circulation, 148, 1958-1973.
https://doi.org/10.1161/circulationaha.123.065827

[34]  Sarkisian, K.I., Ho, L., Yang, J., Mandelbaum, R. and Stanczyk, F.Z. (2023) Neuroendocrine, Neurotransmitter, and Gut Microbiota Imbalance Contributing to Potential Psychiatric Disorder Prevalence in Polycystic Ovarian Syndrome. F&S Reports, 4, 337-342.
https://doi.org/10.1016/j.xfre.2023.08.009

[35]  Pan, X., Liu, Y., Liu, L., Pang, B., Sun, Z., Guan, S., et al. (2022) Bushen Jieyu Tiaochong Formula Reduces Apoptosis of Granulosa Cells via the PERK-ATF4-CHOP Signaling Pathway in a Rat Model of Polycystic Ovary Syndrome with Chronic Stress. Journal of Ethnopharmacology, 292, Article ID: 114923.
https://doi.org/10.1016/j.jep.2021.114923

[36]  孔鑫靓, 唐国栋, 郑志博, 等. 基于SIRT1/P53通路探讨补肾解郁调冲方改善PCOS合并慢性心理应激大鼠卵巢/海马功能的作用机制[J]. 中华中医药杂志, 2023, 38(5): 1949-1954.
[37]  莫婷婷, 刘雁峰, 潘雪, 等. 补肾解郁调冲方对多囊卵巢综合征大鼠生殖、代谢和慢性应激的干预作用[J]. 环球中医药, 2024, 17(11): 2193-2203.
[38]  彭宏偲, 王宏展, 王志, 等. 交泰丸治疗多囊卵巢综合征伴焦虑抑郁临床研究[J]. 中西医结合研究, 2024, 16(1): 6-10.
[39]  Wang, Z., Yang, L., Dong, H., Dong, H., Cheng, L., Yi, P., et al. (2021) Effect of Electroacupuncture on the Kisspeptin System in a Pubertal Rat Model of Polycystic Ovary Syndrome. Acupuncture in Medicine, 39, 491-500.
https://doi.org/10.1177/0964528420971299

[40]  Xu, G., Zhao, X., Li, Z., Hu, J., Li, X., Li, J., et al. (2023) Effects of Electroacupuncture on the Kisspeptin-Gonadotropin-Releasing Hormone (gnrh)/luteinizing Hormone (LH) Neural Circuit Abnormalities and Androgen Receptor Expression of Kisspeptin/Neurokinin B/Dynorphin Neurons in PCOS Rats. Journal of Ovarian Research, 16, Article No. 15.
https://doi.org/10.1186/s13048-022-01078-x

[41]  Ferrero, H., Díaz-Gimeno, P., Sebastián-León, P., Faus, A., Gómez, R. and Pellicer, A. (2018) Dysregulated Genes and Their Functional Pathways in Luteinized Granulosa Cells from PCOS Patients after Cabergoline Treatment. Reproduction, 155, 373-381.
https://doi.org/10.1530/rep-18-0027

[42]  Fawzi, H.A., Hamad, I.N., Kadhim, S.A.A., AL-Temimi, S.M., Mohammad, B. and Swadi, A. (2023) Effects of Combined Metformin and Cabergoline versus Metformin Alone on Ovarian and Hormonal Activities in Iraqi Patients with PCOS and Hyperprolactinemia: A Randomized Clinical Trial. Journal of Medicine and Life, 16, 1615-1621.
https://doi.org/10.25122/jml-2023-0317

[43]  Akintoye, O.O., Ajibare, A.J., Oriyomi, I.A., Olofinbiyi, B.A., Yusuf, G.O., Afuye, D.C., et al. (2023) Synergistic Action of Carvedilol and Clomiphene in Mitigating the Behavioral Phenotypes of Letrozole-Model of PCOS Rats by Modulating the NRF2/NFKB Pathway. Life Sciences, 324, Article ID: 121737.
https://doi.org/10.1016/j.lfs.2023.121737

[44]  Gao, Z., Ma, X., Liu, J., et al. (2020) Troxerutin Protects against DHT-Induced Polycystic Ovary Syndrome in Rats. Journal of Ovarian Research, 13, 133.
[45]  Raoofi, A., Rezaie, M.J., Delbari, A., Ghoreishi, S.A., Sichani, P.H., Maleki, S., et al. (2022) Therapeutic Potentials of the Caffeine in Polycystic Ovary Syndrome in a Rat Model: Via Modulation of Proinflammatory Cytokines and Antioxidant Activity. Allergologia et Immunopathologia, 50, 137-146.
https://doi.org/10.15586/aei.v50i6.715

[46]  Bednarz, K., Kowalczyk, K., Cwynar, M., Czapla, D., Czarkowski, W., Kmita, D., et al. (2022) The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 23, Article No. 4334.
https://doi.org/10.3390/ijms23084334

[47]  Zangeneh, F.Z., Muhammadnejad, S., Naghizadeh, M.M., Jafarabadi, M., Sarmast Shoushtari, M. and Masoumi, M. (2021) The First Report of Clonidine in Vivo/in Vitro Effects on Infertile Women with Polycystic Ovary Syndrome (in Vivo/in Vitro Study). Journal of Obstetrics and Gynaecology, 42, 1331-1339.
https://doi.org/10.1080/01443615.2021.1963221

[48]  Alkan, I. and Kaplan, S. (2023) An Investigation of the Potential Effects of Amitriptyline on Polycystic Ovary Syndrome Induced by Estradiol Valerate. Histochemistry and Cell Biology, 160, 27-37.
https://doi.org/10.1007/s00418-023-02188-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133