|
永磁同步电机温度场降阶模型的构建
|
Abstract:
在新能源汽车产业中,电机作为动力转换的核心部件,而永磁同步电机因其出色的功率密度、效率以及过载能力,在新能源汽车领域中获得了广泛的应用。为研究电机的整体温度场,针对传统电机中温度传感器安装不便不易测量,且通过仿真分析求解温度场时存在模型自由度大导致求解时间长的问题,本文以南普品牌48V1.5KW60H23110404005型号的12槽10极逆变器供电车用变频永磁同步电机为研究对象,首先,在Maxwell软件中对电机进行电磁损耗分析,再以损耗作为载荷输入在ANSYS Workbench中分析电机的温度场。然后采用拉丁超立方抽样法构建电机模型在不同转速工况下的样本矩阵,并分析计算样本集的温度场,对得到的温度场样本集采用本征正交分解法(proper orthogonal decomposition, POD)构建电机温度场的降阶模型并在Twin Builder中实现可视化显示。最后,利用构建的降阶模型快速计算电机的温度场分布,比较与全阶模型的计算误差与求解时间。结果表明,4阶模型计算结果的均方根误差为0.056%,符合POD误差规范要求,构建的降阶模型相较原全阶模型的计算时长由1740 s降至0.74 s,大大提升了温度场的求解效率,验证了该降阶模型的准确性与时效性。
In the new energy vehicle industry, the motor is the core component of power conversion, and the permanent magnet synchronous motor (PMSM) has been widely used in the new energy vehicle field due to its excellent power density, efficiency and overload capacity. In order to study the overall temperature field of the motor, for the traditional motor temperature sensor installation is inconvenient and not easy to measure, and through simulation analysis to solve the temperature field there are large degrees of freedom of the model resulting in a long time to solve the problem, this paper is the south of the brand 48V1.5KW60H23110404005 model of 12-slot 10-pole inverter-powered automotive inverter PM synchronous motor as the object of the study, first of all, the motor was analyzed by Maxwell software. Firstly, the electromagnetic loss of the motor is analyzed in Maxwell software, and then the temperature field of the motor is analyzed in ANSYS Workbench with the loss as the load input. Then, the Latin hypercube sampling method is used to construct the sample matrix of the motor model under different rotational speed conditions, and the temperature field of the sample set is analyzed and calculated. The sample set of the temperature field obtained is used to construct a reduced-order model of the temperature field of the motor by using the method of Proper Orthogonal Decomposition (POD), and is visualized in Twin Builder. display in Twin Builder. Finally, the temperature field distribution of the motor is quickly calculated using the constructed reduced-order model, and the computational errors and solution times are compared with those of the full-order model. The results show that the root-mean-square error of the fourth-order model is 0.056%, which meets the requirements of the POD error specification, and the computation time of the constructed reduced-order model compared with the full-order
[1] | 彭琛, 许宁, 郑亚东. 电动汽车用永磁同步电机控制关键技术研究[J]. 汽车电器, 2023(5): 19-22+26. |
[2] | Finley, W.R. (2014) Advantages of Optimizing Motor & Drives to Ensure Best Performance & Total Cost of Ownership. 2014 IEEE-IAS/PCA Cement Industry Technical Conference, Washington DC, 13-17 April 2014, 1-14. https://doi.org/10.1109/citcon.2014.6820102 |
[3] | Fan, X., Qu, R., Li, J., Li, D., Zhang, B. and Wang, C. (2017) Ventilation and Thermal Improvement of Radial Forced Air-Cooled FSCW Permanent Magnet Synchronous Wind Generators. IEEE Transactions on Industry Applications, 53, 3447-3456. https://doi.org/10.1109/tia.2017.2686350 |
[4] | 荆澜涛, 董雪情, 杨超, 等. 面向数字孪生应用的变压器温度场有限元降阶建模方法研究[J]. 高电压技术, 2023, 49(6): 2408-2419. |
[5] | Boscaglia, L., Boglietti, A., Nategh, S., Bonsanto, F. and Scema, C. (2021) Numerically Based Reduced-Order Thermal Modeling of Traction Motors. IEEE Transactions on Industry Applications, 57, 4118-4129. https://doi.org/10.1109/tia.2021.3077553 |
[6] | 汪利先, 王福硕, 黄卫. 基于POD降阶模型的立面二维水库水温分层模拟研究[J].中国水运(下半月), 2024, 24(5): 40-42. |
[7] | 杨迪, 段承杰, 丁鹏, 等. 参数化流动传热问题的模型降阶方法研究[J]. 原子能科学技术, 2024, 58(7): 1440-1451. |
[8] | 刘刚, 胡万君, 郝世缘, 等. 油浸式变压器绕组瞬态温升降阶快速计算方法[J]. 电工技术学报, 2024, 39(3): 643-657. |
[9] | Jiang, G., Kang, M., Cai, Z., Wang, H., Liu, Y. and Wang, W. (2022) Online Reconstruction of 3D Temperature Field Fused with Pod-Based Reduced Order Approach and Sparse Sensor Data. International Journal of Thermal Sciences, 175, Article ID: 107489. https://doi.org/10.1016/j.ijthermalsci.2022.107489 |
[10] | Pierquin, A. and Henneron, T. (2021) Nonlinear Data-Driven Model Order Reduction Applied to Circuit-Field Magnetic Problem. IEEE Transactions on Magnetics, 57, 1-9. https://doi.org/10.1109/tmag.2021.3108454 |