全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人口接触对菌株竞争传播规模的影响
The Impact of Human Contact on the Transmission Scale of Strain Competition

DOI: 10.12677/mos.2025.142135, PP. 97-105

Keywords: 接触强度,菌株竞争,感染规模,流行病传播
Contact Intensity
, Strain Competition, Infection Scale, Epidemic Transmission

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究人口接触模式对流行病传播的影响,本文基于经典的易感者–感染者–恢复者(SIR)模型,构建了一个包含接触强度的双菌株竞争传播模型,重点分析了接触强度对单菌株感染规模、双菌株感染规模及菌株间竞争的影响。结果表明,当接触强度达到一定阈值时,流行病的传播规模会迅速扩大;传播较快的菌株在高接触强度下占据竞争优势。此外,不同的菌株感染率对竞争态势的调节作用显著,反映了双菌株传播机制的复杂性。研究还表明,通过合理控制接触强度,可有效减缓流行病扩散速度并改变菌株间的竞争态势。本研究提出的模型为理解复杂传染病传播机制提供了新的理论框架,为制定精细化的防控策略提供了方法参考。
To investigate the impact of human contact patterns on epidemic transmission, this study extends the classical Susceptible-Infectious-Recovered (SIR) model by incorporating contact intensity into a dual-strain competitive transmission framework. The analysis focuses on the effects of contact intensity on the infection scale of single strains, the co-infection scale of dual strains, and the dynamics of strain competition. The results reveal that when contact intensity surpasses a certain threshold, the epidemic transmission scale expands rapidly. Strains with faster transmission rates gain a competitive advantage under high contact intensity. Furthermore, variations in strain-specific infection rates significantly influence the competitive dynamics, highlighting the complexity of dual-strain transmission mechanisms. The study also demonstrates that regulating contact intensity effectively slows down the spread of epidemics and alters the competitive dynamics between strains. The proposed model offers a novel theoretical framework for understanding the intricate mechanisms of infectious disease transmission and provides methodological insights for developing targeted and refined control strategies.

References

[1]  Jiang, S. and Shi, Z. (2020) The First Disease X Is Caused by a Highly Transmissible Acute Respiratory Syndrome Coronavirus. Virologica Sinica, 35, 263-265.
https://doi.org/10.1007/s12250-020-00206-5
[2]  Yuan, X., Xue, Y. and Liu, M. (2013) Analysis of an Epidemic Model with Awareness Programs by Media on Complex Networks. Chaos, Solitons & Fractals, 48, 1-11.
https://doi.org/10.1016/j.chaos.2012.12.001
[3]  Wang, Y., Cao, J., Jin, Z., Zhang, H. and Sun, G. (2013) Impact of Media Coverage on Epidemic Spreading in Complex Networks. Physica A: Statistical Mechanics and Its Applications, 392, 5824-5835.
https://doi.org/10.1016/j.physa.2013.07.067
[4]  Hu, H., Nigmatulina, K. and Eckhoff, P. (2013) The Scaling of Contact Rates with Population Density for the Infectious Disease Models. Mathematical Biosciences, 244, 125-134.
https://doi.org/10.1016/j.mbs.2013.04.013
[5]  Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., et al. (2005) Strategies for Containing an Emerging Influenza Pandemic in Southeast Asia. Nature, 437, 209-214.
https://doi.org/10.1038/nature04017
[6]  Poletto, C., Meloni, S., Van Metre, A., Colizza, V., Moreno, Y. and Vespignani, A. (2015) Characterising Two-Pathogen Competition in Spatially Structured Environments. Scientific Reports, 5, Article No. 7895.
https://doi.org/10.1038/srep07895
[7]  Poletto, C., Meloni, S., Colizza, V., Moreno, Y. and Vespignani, A. (2013) Host Mobility Drives Pathogen Competition in Spatially Structured Populations. PLOS Computational Biology, 9, e1003169.
https://doi.org/10.1371/journal.pcbi.1003169
[8]  Colizza, V. and Vespignani, A. (2008) Epidemic Modeling in Metapopulation Systems with Heterogeneous Coupling Pattern: Theory and Simulations. Journal of Theoretical Biology, 251, 450-467.
https://doi.org/10.1016/j.jtbi.2007.11.028
[9]  Chang, S., Pierson, E., Koh, P.W., Gerardin, J., Redbird, B., Grusky, D., et al. (2020) Mobility Network Models of COVID-19 Explain Inequities and Inform Reopening. Nature, 589, 82-87.
https://doi.org/10.1038/s41586-020-2923-3
[10]  Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., et al. (2020) Substantial Undocumented Infection Facilitates the Rapid Dissemination of Novel Coronavirus (SARS-CoV-2). Science, 368, 489-493.
https://doi.org/10.1126/science.abb3221
[11]  Dyson, L., Hill, E.M., Moore, S., Curran-Sebastian, J., Tildesley, M.J., Lythgoe, K.A., et al. (2021) Possible Future Waves of SARS-CoV-2 Infection Generated by Variants of Concern with a Range of Characteristics. Nature Communications, 12, Article No. 5730.
https://doi.org/10.1038/s41467-021-25915-7
[12]  Chen, J., Gu, C., Ruan, Z. and Tang, M. (2023) Competition of SARS-CoV-2 Variants on the Pandemic Transmission Dynamics. Chaos, Solitons & Fractals, 169, Article 113193.
https://doi.org/10.1016/j.chaos.2023.113193
[13]  de León, U.A., Avila-Vales, E. and Huang, K. (2022) Modeling COVID-19 Dynamic Using a Two-Strain Model with Vaccination. Chaos, Solitons & Fractals, 157, Article 111927.
https://doi.org/10.1016/j.chaos.2022.111927
[14]  Kermack, W.O. and McKendrick, A.G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115, 700-721.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133