全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的分数阶涡旋光拓扑荷和传输距离的双重识别
Dual Identification of Fractional Optical Vortices Topological Charge and Transmission Distance Based on Deep Learning

DOI: 10.12677/mos.2025.142134, PP. 88-96

Keywords: 分数阶涡旋光,深度学习,大气湍流,拓扑荷,传输距离
Fractional Optical Vortices
, Deep Learning, Atmospheric Turbulence, Topological Charge, Transmission Distance

Full-Text   Cite this paper   Add to My Lib

Abstract:

分数阶涡旋光与整数阶涡旋光相比具有更加灵活和复杂的轨道角动量等物理特性,在多领域有着非常广泛的应用。近年来,有相关报道在实验中有效同时识别了整数阶涡旋光的拓扑荷和传输距离,为涡旋光的识别提供了新的方向。相比之下,分数阶涡旋光的双重识别研究相对较少,并且随着湍流的加强,相邻整数阶涡旋光在识别中易发生混叠。为针对这一问题,本文在基于大气湍流和高斯白噪声的条件下,提出了一种使用深度学习的方法来识别分数阶涡旋光的拓扑荷和传输距离的方案。本文使用残差卷积神经网络,并使用改进的非Kolmogorov大气湍流模型,在仿真对比中,不同强度大气湍流和高斯白噪声的条件下对距离间隔为100米的分数阶涡旋光光强分布图像进行识别,识别准确率比整数阶涡旋光高5%以上,在距离间隔为100米、50米的不同大气湍流强度和高斯白噪声条件下都得到了比较高的识别精度。
Fractional optical vortices, compared to integral optical vortices, possess more flexible and complex physical properties, such as orbital angular momentum, leading to widespread applications across various fields. In recent years, experimental studies have successfully achieved the simultaneous identification of the topological charge and transmission distance of integral optical vortices, providing new directions for optical vortex recognition. In contrast, research on the dual identification of fractional optical vortices remains relatively limited. Moreover, as turbulence intensifies, adjacent integral optical vortices are prone to entanglement during recognition. To address this issue, this paper proposes a deep learning-based method for identifying the topological charge and transmission distance of fractional optical vortices under conditions of atmospheric turbulence and Gaussian white noise. A residual convolutional neural network was employed, along with an improved non-Kolmogorov atmospheric turbulence model. In simulation comparisons, the intensity distribution images of fractional optical vortices at a transmission distance of 100 meters were identified under varying strengths of atmospheric turbulence and Gaussian white noise, achieving an identification accuracy over 5% higher than that of integral optical vortices. Furthermore, high recognition accuracy was achieved under different atmospheric turbulence strengths and Gaussian white noise conditions at transmission distances of 100 meters and 50 meters.

References

[1]  Berry, M.V. (2004) Optical Vortices Evolving from Helicoidal Integer and Fractional Phase Steps. Journal of Optics A: Pure and Applied Optics, 6, 259-268.
https://doi.org/10.1088/1464-4258/6/2/018

[2]  Shen, Y., Wang, X., Xie, Z., Min, C., Fu, X., Liu, Q., et al. (2019) Optical Vortices 30 Years On: OAM Manipulation from Topological Charge to Multiple Singularities. Light: Science & Applications, 8, Article No. 90.
https://doi.org/10.1038/s41377-019-0194-2

[3]  Padgett, M.J. (2017) Orbital Angular Momentum 25 Years on. Optics Express, 25, 11265-11274.
https://doi.org/10.1364/oe.25.011265

[4]  Yao, A.M. and Padgett, M.J. (2011) Orbital Angular Momentum: Origins, Behavior and Applications. Advances in Optics and Photonics, 3, 161-204.
https://doi.org/10.1364/aop.3.000161

[5]  Liang, C., Zheng, C., Lian, X., Chen, Q., Gao, Y., Liu, J., et al. (2024) Evolution of the Phase Singularity of an Orbital Angular Momentum Beam with an Astigmatism Phase. Photonics, 11, Article 149.
https://doi.org/10.3390/photonics11020149

[6]  Zhu, L., Tang, M., Li, H., Tai, Y. and Li, X. (2021) Optical Vortex Lattice: An Exploitation of Orbital Angular Momentum. Nanophotonics, 10, 2487-2496.
https://doi.org/10.1515/nanoph-2021-0139

[7]  Tao, S.H., Yuan, X., Lin, J., Peng, X. and Niu, H.B. (2005) Fractional Optical Vortex Beam Induced Rotation of Particles. Optics Express, 13, 7726-7731.
https://doi.org/10.1364/opex.13.007726

[8]  Qiao, Z., Wan, Z., Xie, G., Wang, J., Qian, L. and Fan, D. (2020) Multi-Vortex Laser Enabling Spatial and Temporal Encoding. PhotoniX, 1, Article 13.
https://doi.org/10.1186/s43074-020-00013-x

[9]  Long, J., Jin, K., Chen, Q., Chang, H., Chang, Q., Ma, Y., et al. (2023) Generating the 1.5 Kw Mode-Tunable Fractional Vortex Beam by a Coherent Beam Combining System. Optics Letters, 48, 5021-5024.
https://doi.org/10.1364/ol.502321

[10]  Gangwar, S., Jaiswal, V.K., Mehrotra, R., Saha, S. and Sharma, P. (2024) Propagation of Perfect Vortex Beam Beyond the Focal Depth. Applied Physics Letters, 124, Article ID: 154101.
https://doi.org/10.1063/5.0186430

[11]  Chen, Y., Shen, W., Li, Z., Hu, C., Yan, Z., Jiao, Z., et al. (2020) Underwater Transmission of High-Dimensional Twisted Photons over 55 Meters. PhotoniX, 1, Article No. 5.
https://doi.org/10.1186/s43074-020-0002-5

[12]  Xu, Z., Gui, C., Li, S., Zhou, J. and Wang, J. (2014) Fractional Orbital Angular Momentum (OAM) Free-Space Optical Communications with Atmospheric Turbulence Assisted by MIMO Equalization. Advanced Photonics for Communications, San Diego, 13-17 July 2014.
https://doi.org/10.1364/iprsn.2014.jt3a.1

[13]  Zhu, G., Bai, Z., Chen, J., Huang, C., Wu, L., Fu, C., et al. (2021) Ultra-Dense Perfect Optical Orbital Angular Momentum Multiplexed Holography. Optics Express, 29, 28452-28460.
https://doi.org/10.1364/oe.430882

[14]  Li, X., Chu, J., Smithwick, Q. and Chu, D. (2016) Automultiscopic Displays Based on Orbital Angular Momentum of Light. Journal of Optics, 18, Article ID: 085608.
https://doi.org/10.1088/2040-8978/18/8/085608

[15]  Qiu, X., Li, F., Zhang, W., Zhu, Z. and Chen, L. (2018) Spiral Phase Contrast Imaging in Nonlinear Optics: Seeing Phase Objects Using Invisible Illumination. Optica, 5, 208-212.
https://doi.org/10.1364/optica.5.000208

[16]  Situ, G., Pedrini, G. and Osten, W. (2009) Spiral Phase Filtering and Orientation-Selective Edge Detection/Enhancement. Journal of the Optical Society of America A, 26, 1788-1797.
https://doi.org/10.1364/josaa.26.001788

[17]  Sharma, M.K., Joseph, J. and Senthilkumaran, P. (2014) Fractional Vortex Dipole Phase Filter. Applied Physics B, 117, 325-332.
https://doi.org/10.1007/s00340-014-5839-5

[18]  JJ Nivas, J., Allahyari, E., Cardano, F., Rubano, A., Fittipaldi, R., Vecchione, A., et al. (2019) Vector Vortex Beams Generated by Q-Plates as a Versatile Route to Direct Fs Laser Surface Structuring. Applied Surface Science, 471, 1028-1033.
https://doi.org/10.1016/j.apsusc.2018.12.091

[19]  Du, G., Yu, F., Lu, Y., Kai, L., Yang, Q., Hou, X., et al. (2023) Ultrafast Thermalization Dynamics in Au/Ni Film Excited by Femtosecond Laser Double-Pulse Vortex Beam. International Journal of Thermal Sciences, 187, Article ID: 108208.
https://doi.org/10.1016/j.ijthermalsci.2023.108208

[20]  Dasgupta, R., Ahlawat, S., Verma, R.S. and Gupta, P.K. (2011) Optical Orientation and Rotation of Trapped Red Blood Cells with Laguerre-Gaussian Mode. Optics Express, 19, 7680-7688.
https://doi.org/10.1364/oe.19.007680

[21]  Cao, M., Yin, Y., Zhou, J., Tang, J., Cao, L., Xia, Y., et al. (2021) Machine Learning Based Accurate Recognition of Fractional Optical Vortex Modes in Atmospheric Environment. Applied Physics Letters, 119, Article ID: 141103.
https://doi.org/10.1063/5.0061365

[22]  Zhou, J., Yin, Y., Tang, J., Ling, C., Cao, M., Cao, L., et al. (2022) Recognition of High-Resolution Optical Vortex Modes with Deep Residual Learning. Physical Review A, 106, Article ID: 013519.
https://doi.org/10.1103/physreva.106.013519

[23]  Liu, Z., Yan, S., Liu, H. and Chen, X. (2019) Superhigh-Resolution Recognition of Optical Vortex Modes Assisted by a Deep-Learning Method. Physical Review Letters, 123, Article ID: 183902.
https://doi.org/10.1103/physrevlett.123.183902

[24]  Lv, H., Guo, Y., Yang, Z., Ding, C., Cai, W., You, C., et al. (2022) Identification of Diffracted Vortex Beams at Different Propagation Distances Using Deep Learning. Frontiers in Physics, 10, Article 843932.
https://doi.org/10.3389/fphy.2022.843932

[25]  Kotlyar, V.V., Kovalev, A.A., Nalimov, A.G. and Porfirev, A.P. (2020) Evolution of an Optical Vortex with an Initial Fractional Topological Charge. Physical Review A, 102, Article ID: 023516.
https://doi.org/10.1103/physreva.102.023516

[26]  Rodenburg, B., Lavery, M.P.J., Malik, M., O’Sullivan, M.N., Mirhosseini, M., Robertson, D.J., et al. (2012) Influence of Atmospheric Turbulence on States of Light Carrying Orbital Angular Momentum. Optics Letters, 37, 3735-3737.
https://doi.org/10.1364/ol.37.003735

[27]  Yi, X., Liu, Z. and Yue, P. (2013) Optical Scintillations and Fade Statistics for FSO Communications through Moderate-To-Strong Non-Kolmogorov Turbulence. Optics & Laser Technology, 47, 199-207.
https://doi.org/10.1016/j.optlastec.2012.08.008

[28]  Jason, S.D. 光波传输数值仿真[M]. 北京: 国防工业出版社, 2018.
[29]  He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/cvpr.2016.90

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133