全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

聚多巴胺纳米颗粒在缺血性卒中脑保护治疗的应用研究进展
Research Progress on the Application of Polydopamine Nanoparticles in the Protective Treatment of the Brain in Ischemic Stroke

DOI: 10.12677/acm.2025.152407, PP. 782-789

Keywords: 聚多巴胺纳米颗粒,缺血性卒中,神经保护,大脑靶向,多靶点治疗
Polydopamine Nanoparticles
, Ischemic Stroke, Neuroprotection, Brain Targeting, Multi-Target Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

缺血性卒中是一种高致残率和致死率的脑血管疾病,早期治疗以溶栓和神经保护为主。神经保护剂可改善溶栓再通引发的缺血再灌注损伤,但因存在脑靶向性不足和作用靶点单一等缺陷,在临床应用中疗效欠佳。聚多巴胺纳米颗粒是一种具有自由基清除、多功能修饰、光热转换等特性的纳米材料,在神经保护、药物靶向、多靶点治疗方面具有独特优势,为突破目前神经保护治疗的局限提供了一个多功能集合平台。本文总结了聚多巴胺纳米颗粒的抗炎抗氧化的神经保护作用,系统阐述了聚多巴胺纳米颗粒通过各种途径促进神经保护剂靶向大脑,并结合其本身的自由基清除功能发挥多靶点治疗,为疗效确切的脑保护治疗方案的开发和应用提供新的策略。
Ischemic stroke is a cerebrovascular disease with a high disabling and lethal rate, and early treatment is mainly thrombolysis and neuroprotection. Neuroprotective agents can improve ischemia-reperfusion injury caused by thrombolytic recanalization, but they have poor efficacy in clinical application due to shortcomings such as insufficient brain targeting and single target. Polydopamine nanoparticles are nanomaterials with the characteristics of free radical scavenging, multifunctional modification, photothermal conversion, etc., which have unique advantages in neuroprotection, drug targeting, and multi-target therapy, and provide a multifunctional platform for breaking through the limitations of current neuroprotective therapy. In this paper, we summarize the neuroprotective effects of polydopamine nanoparticles on anti-inflammatory and antioxidant effects, and systematically elaborate that polydopamine nanoparticles promote the targeting of neuroprotective agents to the brain through various pathways, and combine their own free radical scavenging functions to exert multi-target therapy, providing a new strategy for the development and application of brain protection therapy regimens with definite efficacy.

References

[1]  Li, X., Kong, X., Yang, C., Cheng, Z., Lv, J., Guo, H., et al. (2024) Global, Regional, and National Burden of Ischemic Stroke, 1990-2021: An Analysis of Data from the Global Burden of Disease Study 2021. eClinicalMedicine, 75, Article 102758.
https://doi.org/10.1016/j.eclinm.2024.102758
[2]  Hacke, W., Kaste, M., Fieschi, C., von Kummer, R., Davalos, A., Meier, D., et al. (1998) Randomised Double-Blind Placebo-Controlled Trial of Thrombolytic Therapy with Intravenous Alteplase in Acute Ischaemic Stroke (ECASS II). The Lancet, 352, 1245-1251.
https://doi.org/10.1016/s0140-6736(98)08020-9
[3]  Wang, Y., Li, S., Pan, Y., Li, H., Parsons, M.W., Campbell, B.C.V., et al. (2023) Tenecteplase versus Alteplase in Acute Ischaemic Cerebrovascular Events (TRACE-2): A Phase 3, Multicentre, Open-Label, Randomised Controlled, Non-Inferiority Trial. The Lancet, 401, 645-654.
https://doi.org/10.1016/s0140-6736(22)02600-9
[4]  Parvez, S., Kaushik, M., Ali, M., Alam, M.M., Ali, J., Tabassum, H., et al. (2022) Dodging Blood Brain Barrier with “Nano” Warriors: Novel Strategy against Ischemic Stroke. Theranostics, 12, 689-719.
https://doi.org/10.7150/thno.64806
[5]  Tian, X., Fan, T., Zhao, W., Abbas, G., Han, B., Zhang, K., et al. (2021) Recent Advances in the Development of Nanomedicines for the Treatment of Ischemic Stroke. Bioactive Materials, 6, 2854-2869.
https://doi.org/10.1016/j.bioactmat.2021.01.023
[6]  Li, C., Sun, T. and Jiang, C. (2021) Recent Advances in Nanomedicines for the Treatment of Ischemic Stroke. Acta Pharmaceutica Sinica B, 11, 1767-1788.
https://doi.org/10.1016/j.apsb.2020.11.019
[7]  Wu, Z., Yuan, K., Zhang, Q., Guo, J.J., Yang, H. and Zhou, F. (2022) Antioxidant PDA-PEG Nanoparticles Alleviate Early Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Journal of Nanobiotechnology, 20, Article No. 479.
https://doi.org/10.1186/s12951-022-01697-y
[8]  Li, H., Yin, D., Li, W., Tang, Q., Zou, L. and Peng, Q. (2021) Polydopamine-Based Nanomaterials and Their Potentials in Advanced Drug Delivery and Therapy. Colloids and Surfaces B: Biointerfaces, 199, Article 111502.
https://doi.org/10.1016/j.colsurfb.2020.111502
[9]  Jin, A., Wang, Y., Lin, K. and Jiang, L. (2020) Nanoparticles Modified by Polydopamine: Working as “Drug” Carriers. Bioactive Materials, 5, 522-541.
https://doi.org/10.1016/j.bioactmat.2020.04.003
[10]  Ma, J., Li, J., Wang, X., Li, M., Teng, W., Tao, Z., et al. (2023) GDNF‐Loaded Polydopamine Nanoparticles‐Based Anisotropic Scaffolds Promote Spinal Cord Repair by Modulating Inhibitory Microenvironment. Advanced Healthcare Materials, 12, Article ID: 2202377.
https://doi.org/10.1002/adhm.202202377
[11]  Huang, Q., Jiang, C., Xia, X., Wang, Y., Yan, C., Wang, X., et al. (2023) Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer’s Disease. Research, 6, Article ID: 0180.
https://doi.org/10.34133/research.0180
[12]  Shi, T., Chen, Y., Zhou, L., Wu, D., Chen, Z., Wang, Z., et al. (2024) Carboxymethyl Cellulose/Quaternized Chitosan Hydrogel Loaded with Polydopamine Nanoparticles Promotes Spinal Cord Injury Recovery by Anti-Ferroptosis and M1/M2 Polarization Modulation. International Journal of Biological Macromolecules, 275, Article 133484.
https://doi.org/10.1016/j.ijbiomac.2024.133484
[13]  Yang, X., Chen, Y., Guo, J., Li, J., Zhang, P., Yang, H., et al. (2023) Polydopamine Nanoparticles Targeting Ferroptosis Mitigate Intervertebral Disc Degeneration via Reactive Oxygen Species Depletion, Iron Ions Chelation, and GPX4 Ubiquitination Suppression. Advanced Science, 10, Article ID: 2207216.
https://doi.org/10.1002/advs.202207216
[14]  Lou, X., Hu, Y., Zhang, H., Liu, J. and Zhao, Y. (2021) Polydopamine Nanoparticles Attenuate Retina Ganglion Cell Degeneration and Restore Visual Function after Optic Nerve Injury. Journal of Nanobiotechnology, 19, Article No. 436.
https://doi.org/10.1186/s12951-021-01199-3
[15]  Zhu, T., Wang, H., Gu, H., Ju, L., Wu, X., Pan, W., et al. (2023) Melanin-Like Polydopamine Nanoparticles Mediating Anti-Inflammatory and Rescuing Synaptic Loss for Inflammatory Depression Therapy. Journal of Nanobiotechnology, 21, Article No. 52.
https://doi.org/10.1186/s12951-023-01807-4
[16]  He, Y., Zhang, M., Gong, X., Liu, X., Zhou, F. and Yang, B. (2024) Diselenide-Bridged Mesoporous Silica-Based Nanoplatform with a Triple Ros-Scavenging Effect for Intracerebral Hemorrhage Treatment. ACS Applied Materials & Interfaces, 16, 40739-40752.
https://doi.org/10.1021/acsami.4c08726
[17]  Huang, E., Li, H., Han, H., Guo, L., Liang, Y., Huang, Z., et al. (2024) Polydopamine-Coated Kaempferol-Loaded MOF Nanoparticles: A Novel Therapeutic Strategy for Postoperative Neurocognitive Disorder. International Journal of Nanomedicine, 19, 4569-4588.
https://doi.org/10.2147/ijn.s455492
[18]  Cao, Z., Liu, X., Zhang, W., Zhang, K., Pan, L., Zhu, M., et al. (2023) Biomimetic Macrophage Membrane-Camouflaged Nanoparticles Induce Ferroptosis by Promoting Mitochondrial Damage in Glioblastoma. ACS Nano, 17, 23746-23760.
https://doi.org/10.1021/acsnano.3c07555
[19]  Liu, J., Chi, M., Li, L., Zhang, Y. and Xie, M. (2024) Erythrocyte Membrane Coated with Nitrogen-Doped Quantum Dots and Polydopamine Composite Nano-System Combined with Photothermal Treatment of Alzheimer’s Disease. Journal of Colloid and Interface Science, 663, 856-868.
https://doi.org/10.1016/j.jcis.2024.02.219
[20]  Shi, J., Yang, Y., Yin, N., Liu, C., Zhao, Y., Cheng, H., et al. (2021) Engineering CXCL12 Biomimetic Decoy‐Integrated Versatile Immunosuppressive Nanoparticle for Ischemic Stroke Therapy with Management of Overactivated Brain Immune Microenvironment. Small Methods, 6, Article 2101158.
https://doi.org/10.1002/smtd.202101158
[21]  Yu, X., Chen, D., Zhang, Y., Wu, X., Huang, Z., Zhou, H., et al. (2012) Overexpression of CXCR4 in Mesenchymal Stem Cells Promotes Migration, Neuroprotection and Angiogenesis in a Rat Model of Stroke. Journal of the Neurological Sciences, 316, 141-149.
https://doi.org/10.1016/j.jns.2012.01.001
[22]  Li, X., Zhang, Y., Wang, Y., Zhao, D., Sun, C., Zhou, S., et al. (2020) Exosomes Derived from CXCR4-Overexpressing BMSC Promoted Activation of Microvascular Endothelial Cells in Cerebral Ischemia/Reperfusion Injury. Neural Plasticity, 2020, Article ID: 8814239.
https://doi.org/10.1155/2020/8814239
[23]  Zhang, S., Asghar, S., Ye, J., Lin, L., Ping, Q., Chen, Z., et al. (2020) A Combination of Receptor Mediated Transcytosis and Photothermal Effect Promotes BBB Permeability and the Treatment of Meningitis Using Itraconazole. Nanoscale, 12, 23709-23720.
https://doi.org/10.1039/d0nr04035e
[24]  Chen, X., Zheng, Y., Zhang, Q., Chen, Q., Chen, Z. and Wu, D. (2024) Dual-Targeted Delivery of Temozolomide by Multi-Responsive Nanoplatform via Tumor Microenvironment Modulation for Overcoming Drug Resistance to Treat Glioblastoma. Journal of Nanobiotechnology, 22, Article No. 264.
https://doi.org/10.1186/s12951-024-02531-3
[25]  Gao, Y., Cheng, Y., Chen, J., Lin, D., Liu, C., Zhang, L., et al. (2022) NIR‐Assisted MgO‐Based Polydopamine Nanoparticles for Targeted Treatment of Parkinson’s Disease through the Blood-Brain Barrier. Advanced Healthcare Materials, 11, Article ID: 2201655.
https://doi.org/10.1002/adhm.202201655
[26]  Duan, Q., Liu, R., Luo, J., Zhang, J., Zhou, Y., Zhao, J., et al. (2023) Virus-Inspired Glucose and Polydopamine (GPDA)-Coating as an Effective Strategy for the Construction of Brain Delivery Platforms. Nano Letters, 24, 402-410.
https://doi.org/10.1021/acs.nanolett.3c04175
[27]  Wang, X., Song, B., Wang, Z., Qin, L. and Liang, W. (2023) The Innovative Design of a Delivery and Real-Time Tracer System for Anti-Encephalitis Drugs That Can Penetrate the Blood-Brain Barrier. Journal of Controlled Release, 363, 136-148.
https://doi.org/10.1016/j.jconrel.2023.09.043
[28]  Cui, W., Liu, R., Jin, H., Lv, P., Sun, Y., Men, X., et al. (2016) pH Gradient Difference around Ischemic Brain Tissue Can Serve as a Trigger for Delivering Polyethylene Glycol-Conjugated Urokinase Nanogels. Journal of Controlled Release, 225, 53-63.
https://doi.org/10.1016/j.jconrel.2016.01.028
[29]  Li, Y., Jiang, C., Zhang, D., Wang, Y., Ren, X., Ai, K., et al. (2017) Targeted Polydopamine Nanoparticles Enable Photoacoustic Imaging Guided Chemo-Photothermal Synergistic Therapy of Tumor. Acta Biomaterialia, 47, 124-134.
https://doi.org/10.1016/j.actbio.2016.10.010
[30]  Cai, W., Wu, Q., Yan, Z.Z., He, W., Zhou, X., Zhou, L., et al. (2021) Neuroprotective Effect of Ultrasound Triggered Astaxanthin Release Nanoparticles on Early Brain Injury after Subarachnoid Hemorrhage. Frontiers in Chemistry, 9, Article 775274.
https://doi.org/10.3389/fchem.2021.775274
[31]  Yan, J., Liu, T., Li, Y., Zhang, J., Shi, B., Zhang, F., et al. (2023) Effects of Magnetically Targeted Iron Oxide@Polydopamine-Labeled Human Umbilical Cord Mesenchymal Stem Cells in Cerebral Infarction in Mice. Aging, 15, 1130-1142.
https://doi.org/10.18632/aging.204540
[32]  Zhao, Y., Song, C., Wang, H., Gai, C., Li, T., Cheng, Y., et al. (2024) Polydopamine-Cloaked Nanoarchitectonics of Prussian Blue Nanoparticles Promote Functional Recovery in Neonatal and Adult Ischemic Stroke Models. Biomaterials Research, 28, Article ID: 0079.
https://doi.org/10.34133/bmr.0079
[33]  Wu, D., Zhou, J., Zheng, Y., Zheng, Y., Zhang, Q., Zhou, Z., et al. (2023) Pathogenesis-Adaptive Polydopamine Nanosystem for Sequential Therapy of Ischemic Stroke. Nature Communications, 14, Article No. 7147.
https://doi.org/10.1038/s41467-023-43070-z
[34]  Jiang, X., Wang, W., Tang, J., Han, M., Xu, Y., Zhang, L., et al. (2023) Ligand‐Screened Cerium‐Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. Advanced Science, 11, Article ID: 2306780.
https://doi.org/10.1002/advs.202306780
[35]  Wang, Y., Li, B., Xu, H., Du, S., Liu, T., Ren, J., et al. (2020) Growth and Elongation of Axons through Mechanical Tension Mediated by Fluorescent-Magnetic Bifunctional Fe3O4·Rhodamine 6G@PDA Superparticles. Journal of Nanobiotechnology, 18, Article No. 64.
https://doi.org/10.1186/s12951-020-00621-6
[36]  Liu, Y., Ai, K., Liu, J., Deng, M., He, Y. and Lu, L. (2012) Dopamine‐Melanin Colloidal Nanospheres: An Efficient Near‐Infrared Photothermal Therapeutic Agent for in vivo Cancer Therapy. Advanced Materials, 25, 1353-1359.
https://doi.org/10.1002/adma.201204683

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133