|
肺腺癌病理分级预测相关生物标志物研究进展——肿瘤病理分级预测标志物探索
|
Abstract:
肺腺癌(LUAD)是非小细胞肺癌(NSCLC)的主要类型,其病理分级对于评估肿瘤侵袭性和预后至关重要。不同病理级别的LUAD在基因表达、TP53基因突变、转录因子FOSB、循环肿瘤细胞(CTC)以及外周血炎症因子等生物标志物表达上存在显著差异,可预测病理分级。因此,确定可靠的病理分级预测的生物标志物对治疗方案的选择至关重要。本文围绕LUAD病理分级预测相关的生物标志物进行综述,以期制定个体化治疗方案、改善预后。
Lung adenocarcinoma (LUAD) is the predominant type of non-small cell lung cancer (NSCLC), and its pathological grading is crucial for assessing tumor aggressiveness and prognosis. LUADs of different pathological grades exhibit significant differences in the expression of biomarkers such as gene expression, TP53 gene mutations, transcription factor FOSB, circulating tumor cells (CTC), and peripheral blood inflammatory factors, which can predict pathological grading. Therefore, identifying reliable biomarkers for predicting pathological grading is essential for selecting appropriate treatment regimens. This review focuses on biomarkers related to LUAD pathological grading prediction, aiming to facilitate the development of individualized treatment plans and improve prognosis.
[1] | Duan, X., Qiao, S., Li, D., Li, S., Zheng, Z., Wang, Q., et al. (2021) Circulating miRNAs in Serum as Biomarkers for Early Diagnosis of Non-Small Cell Lung Cancer. Frontiers in Genetics, 12, Article ID: 673926. https://doi.org/10.3389/fgene.2021.673926 |
[2] | Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763 |
[3] | 周瑞清, 杨瑞青, 刘斌, 等. 不同病理类型肺腺癌患者EGFR基因突变特点分析[J]. 医学临床研究, 2020, 37(9): 1316-1318, 1322. |
[4] | Le, T. and Gerber, D.E. (2017) ALK Alterations and Inhibition in Lung Cancer. Seminars in Cancer Biology, 42, 81-88. https://doi.org/10.1016/j.semcancer.2016.08.007 |
[5] | 何东元, 陈波, 梁靖瑶, 等. 肺腺癌中加权基因共表达网络鉴定免疫细胞相关生物标志物[J/OL]. 中国胸心血管外科临床杂志, 2024: 1-15. http://kns.cnki.net/kcms/detail/51.1492.R.20240731.1705.008.html, 2024-09-09. |
[6] | 王为民, 韩志刚, 俞婷婷. CPB2为晚期肺腺癌EGFR-T790M耐药基因突变的潜在生物标志物[J]. 实用肿瘤杂志, 2024, 39(3): 242-251. |
[7] | 宫慧敏. 基于基因表达和拷贝数变异数据的肺腺癌生物标志物挖掘及诊断分析研究[D]: [硕士学位论文]. 景德镇: 景德镇陶瓷大学, 2024. |
[8] | Goldstraw, P., Ball, D., Jett, J.R., Le Chevalier, T., Lim, E., Nicholson, A.G., et al. (2011) Non-Small-Cell Lung Cancer. The Lancet, 378, 1727-1740. https://doi.org/10.1016/s0140-6736(10)62101-0 |
[9] | International Association for the Study of Lung Cancer Pathology Committee (2011) Proposal for a New International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. Journal of Thoracic Oncology, 6, 244-285. |
[10] | Hayes, D.N., Monti, S., Parmigiani, G., Gilks, C.B., Naoki, K., Bhattacharjee, A., et al. (2006) Gene Expression Profiling Reveals Reproducible Human Lung Adenocarcinoma Subtypes in Multiple Independent Patient Cohorts. Journal of Clinical Oncology, 24, 5079-5090. https://doi.org/10.1200/jco.2005.05.1748 |
[11] | Dong, L., Fu, L., Zhu, T., Wu, Y., Li, Z., Ding, J., et al. (2023) A Five-Collagen-Based Risk Model in Lung Adenocarcinoma: Prognostic Significance and Immune Landscape. Frontiers in Oncology, 13, Article ID: 1180723. https://doi.org/10.3389/fonc.2023.1180723 |
[12] | 张薇. 非小细胞肺癌及其转移相关基因表达谱的研究[Z]. 哈尔滨, 哈尔滨医科大学附属第一医院, 2008-10-16. |
[13] | Lu, Y., Girard, L., Gao, G., et al. (2011) Molecular Subclassification of Lung Adenocarcinoma Identifies Prognostic Markers. Journal of Clinical Oncology, 29, 1438-1446. |
[14] | Zhang, H., Zhang, G., Xiao, M., Cui, S., Jin, C., Yang, J., et al. (2024) Two-Polarized Roles of Transcription Factor FOSB in Lung Cancer Progression and Prognosis: Dependent on P53 Status. Journal of Experimental & Clinical Cancer Research, 43, 1-15. https://doi.org/10.1186/s13046-024-03161-1 |
[15] | Xu, Y., Yang, Y., Wang, Y., Su, J., Chan, T., Zhou, J., et al. (2023) Correction: Molecular Fingerprints of Nuclear Genome and Mitochondrial Genome for Early Diagnosis of Lung Adenocarcinoma. Journal of Translational Medicine, 21, Article No. 268. https://doi.org/10.1186/s12967-023-04128-0 |
[16] | Zhang, X., Min, S., Yang, Y., Ding, D., Li, Q., Liu, S., et al. (2022) A TP53 Related Immune Prognostic Model for the Prediction of Clinical Outcomes and Therapeutic Responses in Lung Adenocarcinoma. Frontiers in Immunology, 13, Article ID: 876355. https://doi.org/10.3389/fimmu.2022.876355 |
[17] | Donehower, L.A., Soussi, T., Korkut, A., Liu, Y., Schultz, A., Cardenas, M., et al. (2019) Integrated Analysis of TP53 Gene and Pathway Alterations in the Cancer Genome Atlas. Cell Reports, 28, Article No. 3010. https://doi.org/10.1016/j.celrep.2019.08.061 |
[18] | Krebs, M.G., Sloane, R., Priest, L., Lancashire, L., Hou, J., Greystoke, A., et al. (2011) Evaluation and Prognostic Significance of Circulating Tumor Cells in Patients with Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 29, 1556-1563. https://doi.org/10.1200/jco.2010.28.7045 |
[19] | Jin, F., Zhu, L., Shao, J., Yakoub, M., Schmitt, L., Reißfelder, C., et al. (2022) Circulating Tumour Cells in Patients with Lung Cancer Universally Indicate Poor Prognosis. European Respiratory Review, 31, Article ID: 220151. https://doi.org/10.1183/16000617.0151-2022 |
[20] | Lawrence, R., Watters, M., Davies, C.R., Pantel, K. and Lu, Y. (2023) Circulating Tumour Cells for Early Detection of Clinically Relevant Cancer. Nature Reviews Clinical Oncology, 20, 487-500. https://doi.org/10.1038/s41571-023-00781-y |
[21] | 刘秋阁, 刘亚楠, 王刚, 等. 循环肿瘤细胞监测在晚期非小细胞肺癌疗效评价和预后评估中的作用[J]. 中国医科大学学报, 2020, 49(9): 812-817+823. |
[22] | 姚亚仙, 夏立亮, 王慧, 等. 外周血单核细胞在抗PD-L1单抗治疗非小细胞肺癌疗效评价中的作用[J]. 现代肿瘤医学, 2021, 29(24): 4316-4323. |
[23] | 钟子晴. 外周血中IL-6、IL-8、IL-17及IL-33水平与慢性阻塞性肺疾病合并肺癌的相关性研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023. |
[24] | 高文君, 杨守梅, 吴丹, 等. 外周血炎症因子水平与原发性肺癌患者营养状况的相关性临床研究[J]. 肿瘤学杂志, 2022, 28(10): 833-840. |
[25] | Ksienski, D., Wai, E.S., Alex, D., Croteau, N.S., Freeman, A.T., Chan, A., et al. (2021) Prognostic Significance of the Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Advanced Non-Small Cell Lung Cancer Patients with High PD-L1 Tumor Expression Receiving Pembrolizumab. Translational Lung Cancer Research, 10, 355-367. https://doi.org/10.21037/tlcr-20-541 |
[26] | Asada, K., Kaneko, S., Takasawa, K., Shiraishi, K., Shinkai, N., Shimada, Y., et al. (2024) Multi-Omics and Clustering Analyses Reveal the Mechanisms Underlying Unmet Needs for Patients with Lung Adenocarcinoma and Identify Potential Therapeutic Targets. Molecular Cancer, 23, Article No. 182. https://doi.org/10.1186/s12943-024-02093-w |
[27] | Waarts, M.R., Stonestrom, A.J., Park, Y.C. and Levine, R.L. (2022) Targeting Mutations in Cancer. Journal of Clinical Investigation, 132, e154943. https://doi.org/10.1172/jci154943 |
[28] | Kaneko, S., Takasawa, K., Asada, K., Shiraishi, K., Ikawa, N., Machino, H., et al. (2024) Mechanism of ERBB2 Gene Overexpression by the Formation of Super-Enhancer with Genomic Structural Abnormalities in Lung Adenocarcinoma without Clinically Actionable Genetic Alterations. Molecular Cancer, 23, Article No. 126. https://doi.org/10.1186/s12943-024-02035-6 |
[29] | Kang, J., Lee, J.H., Cha, H., An, J., Kwon, J., Lee, S., et al. (2024) Systematic Dissection of Tumor-Normal Single-Cell Ecosystems across a Thousand Tumors of 30 Cancer Types. Nature Communications, 15, Article No. 4067. https://doi.org/10.1038/s41467-024-48310-4 |
[30] | Olaussen, K.A., Dunant, A., Fouret, P., Brambilla, E., André, F., Haddad, V., et al. (2006) DNA Repair by ERCC1 in Non-small-Cell Lung Cancer and Cisplatin-Based Adjuvant Chemotherapy. New England Journal of Medicine, 355, 983-991. https://doi.org/10.1056/nejmoa060570 |