Structural Evolution of Kollapur Region in the Northwestern Margin of Cuddapah Basin and, Eastern Dharwar Craton, South India: New Insights from Gravity Anomalies
To decipher both shallow and deeper structural features that may control the emplacement of Kimberlite/Lamproite bodies in basement-exposed and covered areas, a detailed gravity survey was conducted on the northern bank of the Krishna River in the Kollarpur region of the Proterozoic Cuddapah Basin, within the Eastern Dharwar Craton. The study revealed an overall basement disposition dipping from south to north, controlled by a set of parallel E-W and NW-SE trending faults. In the northeastern part of the study area, the high-gravity zone corresponds to high-density source rocks at both shallow and deeper levels within the granite-gneissic basement. The residual gravity map highlights the disposition of high-density shallow source bodies as elliptical highs, located at Narlapur, Kalwakole, and Yelur in the eastern part. These residual gravity highs correspond to enclaves of amphibolite schist and BIF bands within granite-gneissic rocks. In the covered region of the southern part, the overall gravity low zone indicates the distribution of sediments with a thickness of about 1 km. Several NW-SE, N-S, NE-SW, and E-W structural features were delineated from the gravity survey. A major E-W gravity gradient along the northern margin of the Cuddapah and Kurnool groups of sediments is interpreted as a deep-rooted boundary fault. Parallel to this boundary fault, two NW-SE gravity gradients were identified in the northern and central parts within the Archean granite-gneissic basement rocks. Depth extensions of these major structures exceed 1 km. The N-S and NE-SW structures, although shorter in strike length, intersect with the major NW-SE and E-W structures. Some of these intersection zones correspond to known Kimberlite/Lamproite occurrences in both covered and basement-exposed areas. Based on these findings, potential loci for Kimberlite/Lamproite exploration have been delineated along the northern bank of the Krishna River in the Kollarpur region.
References
[1]
Anand, M., Gibson, S. A., Subbarao, K. V., Kelley, S. P., & Dickin, A. P. (2003). Early Proterozoic Melt Generation Processes beneath the Intra-Cratonic Cuddapah Basin, Southern India. Journal of Petrology, 44, 2139-2171. https://doi.org/10.1093/petrology/egg073
[2]
Ananda Reddy, R. (2014). Qualitative Analysis of Mafic Dyke Swarms and Kimberlites from Morphological and Geophysical Signatures, NW of Proterozoic Cuddapah Basin, Eastern Dharwar Craton. Journal of the Geological Society of India, 83, 235-251. https://doi.org/10.1007/s12594-014-0036-z
[3]
Chadwick, B., Vasudev, V. N., Hegde, G. V., & Nutman, A. P. (2007). Structure and SHRIMP U/Pb Zircon Ages of Granites Adjacent to the Chitradurga Schist Belt: Implications for Neoarchaean Convergence in the Dharwar Craton, Southern India. Journal of the Geological Society of India, 69, 5-24.
[4]
Chalapathi Rao, N. V. C., Wu, F., Mitchell, R. H., Li, Q., & Lehmann, B. (2013). Mesoproterozoic U-Pb Ages, Trace Element and Sr-Nd Isotopic Composition of Perovskite from Kimberlites of the Eastern Dharwar Craton, Southern India: Distinct Mantle Sources and a Widespread 1.1ga Tectonomagmatic Event. Chemical Geology, 353, 48-64. https://doi.org/10.1016/j.chemgeo.2012.04.023
[5]
Chandrakala, K., Pandey, O. P., Prasad, A. S. S. S. R. S., & Sain, K. (2015). Seismic Imaging across the Eastern Ghats Belt-Cuddapah Basin Collisional Zone, Southern Indian Shield and Possible Geodynamic Implications. Precambrian Research, 271, 56-64. https://doi.org/10.1016/j.precamres.2015.09.023
[6]
Ganguli, S. S., Pal, S. K., Rama Rao, J. V., & Sunder Raj, B. (2020). Gravity-Magnetic Appraisal at the Interface of Cuddapah Basin and Nellore Schist Belt (NSB) for Shallow Crustal Architecture and Tectonic Settings. Journal of Earth System Science, 129, Article No. 92. https://doi.org/10.1007/s12040-020-1354-8
[7]
Ganguli, S. S., Singh, S., Das, N., Maurya, D., Pal, S. K., & Rao, J. V. R. (2019). Gravity and Magnetic Survey in Southwestern Part of Cuddapah Basin, India and Its Implication for Shallow Crustal Architecture and Mineralization. Journal of the Geological Society of India, 93, 419-430. https://doi.org/10.1007/s12594-019-1196-7
[8]
Giri, R. K., Pankaj, P., Chalapathi Rao, N. V., Chakrabarti, R., & Pandit, D. (2019). Petrogenesis of an Alkaline Lamprophyre (Camptonite) with Ocean Island Basalt (Oib)-Affinity at the NW Margin of the Cuddapah Basin, Eastern Dharwar Craton, Southern India. Neues Jahrbuch für Mineralogie—Abhandlungen, 196, 149-177. https://doi.org/10.1127/njma/2019/0179
[9]
Jayananda, M., Aadhiseshan, K. R., Kusiak, M. A., Wilde, S. A., Sekhamo, K., Guitreau, M. et al. (2020). Multi-stage Crustal Growth and Neoarchean Geodynamics in the Eastern Dharwar Craton, Southern India. Gondwana Research, 78, 228-260. https://doi.org/10.1016/j.gr.2019.09.005
[10]
Jogu, L. S., Udaya Laxmi, G., Chandrashekar, B., & Ravi Kumar, B. (2022). Subsurface Structural Features Inferred from Ground Magnetic Data in Parts of Nagarkurnool and Wanaparthy Districts, Telangana State (India). The Journal of Indian Geophysical Union, 26, 396-406.
[11]
Khalil, A., Abdel Hafeez, T. H., Saleh, H. S., & Mohamed, W. H. (2016). Inferring the Subsurface Basement Depth and the Structural Trends as Deduced from Aeromagnetic Data at West Beni Suef Area, Western Desert, Egypt. NRIAG Journal of Astronomy and Geophysics, 5, 380-392. https://doi.org/10.1016/j.nrjag.2016.08.001
[12]
Kivior, I., & Boyd, D. (1998). Interpretation of the Aeromagnetic Experimental Survey in the Eromanga/Cooper Basin. The Canadian Journal of Exploration Geophysics, 34, 58-66.
[13]
Kumar, A., Ahmed, S., Priya, R., & Sridhar, M. (2013). Discovery of Lamproites near Vattikod Area, NW Margin of the Cuddapah Basin, Eastern Dharwar Craton, Southern India. Journal of the Geological Society of India, 82, 307-312. https://doi.org/10.1007/s12594-013-0157-9
[14]
Kumar, S., Pal, S. K., Guha, A., Sahoo, S. D., & Mukherjee, A. (2022). New Insights on Kimberlite Emplacement around the Bundelkhand Craton Using Integrated Satellite-Based Remote Sensing, Gravity and Magnetic Data. Geocarto International, 37, 999-1021. https://doi.org/10.1080/10106049.2020.1756459
[15]
Kumar, U., Pal, S. K., Sahoo, S. D., Narayan, S., Saurabh, Mondal, S. et al. (2018). Lineament Mapping over Sir Creek Offshore and Its Surroundings Using High Resolution EGM2008 Gravity Data: An Integrated Derivative Approach. Journal of the Geological Society of India, 91, 671-678. https://doi.org/10.1007/s12594-018-0922-x
[16]
Kusham, Naick, B. P., Pratap, A., & Naganjaneyulu, K. (2021). Magnetotelluric 3-D Full Tensor Inversion in the Dharwar Craton, India: Mapping of Subduction Polarity and Kimberlitic Melt. Physics of the Earth and Planetary Interiors, 315, Article ID: 106708. https://doi.org/10.1016/j.pepi.2021.106708
[17]
Lakshminarayana, G., & Bhattacharjee, S. (2000). Shallow Marine Siliciclastic Sedimentation in the Middle Proterozoic Gandikota Quartzite, Cuddapah Basin, Andhra Pradesh. Journal of the Geological Society of India, 55, 65-76.
[18]
Lakshminarayana, G., Bhattacharjee, S., & Ramanaidu, K. V. (2001). Sedimentation and Stratigraphic Framework in the Cuddapah Basin. Geological Survey of India, 55, 31-58.
[19]
Meshram, R. S., Rao, V., & Gopalakrishna, G. (2012). Petrology of Lamprophyres from Ankiraopalli, Mahabubnagar District, Andhra Pradesh. Gondwana Geo-Logical Magazine, 13, 95-102.
[20]
Mishra, D. C., & Prajapati, S. K. (2003). A Plausible Model for Evolution of Schist Belts and Granite Plutons of Dharwar Craton, India and Madagascar during 3.0-2.5 Ga: Insight from Gravity Modeling Constrained in Part from Seismic Studies. Gondwana Research, 6, 501-511. https://doi.org/10.1016/s1342-937x(05)71001-7
[21]
Mohan, M. R., Asokan, A. D., & Wilde, S. A. (2020). Crustal Growth of the Eastern Dharwar Craton: A Neoarchean Collisional Orogeny? Geological Society, London, Special Publications, 489, 51-77. https://doi.org/10.1144/sp489-2019-108
[22]
Mukherjee, A., Mathur, R. R., Verma, C. B., & Tiwari, P. K. (2021a). Gravity and Magnetic Surveys for Kimberlite Structures in Baghain and Rampura-Motwa, Panna Diamond Belt, Madhya Pradesh, India. Arabian Journal of Geosciences, 14, Article No. 414. https://doi.org/10.1007/s12517-021-06760-w
[23]
Mukherjee, A., Tiwari, P., Verma, C. B., Babu, E. V. S. S. K., & Sarathi, J. P. (2021b). Native Gold and Au-Pt Alloy in Eclogite Xenoliths of Kalyandurg KL-2 Kimberlite, Anantapur District, South India. Journal of the Geological Society of India, 97, 567-570. https://doi.org/10.1007/s12594-021-1731-1
[24]
Nandhagopal, N., Kumar, R. S., Kannadasan, T., & BawanhunMawthoh, M. (2015). Inferences from Satellite Images for Locating Kimberlite: Mahabubnagar Area, Telangana, South India. Elixir Earth Science, 84, 33547-33553.
[25]
Nayak, S. S., Ravi, S., Sridhar, M., Reddy, N. S., Chowdary, V. S., Bhakara Rao, K. S., Sinha, K. K., & Rao, T. K. (2005). Geology and Tectonic Setting of Kimberlites of Dharwar Craton: Group Discussion on Kimberlites and Related Rocks of India. Journal of Geological Society of India,58, 603-613.
[26]
Pal, S. K., & Kumar, S. (2019). Subsurface Structural Mapping Using EIGEN6C4 Data over Bundelkhand Craton and Surroundings: An Appraisal on Kimberlite/Lamproite Emplacement. Journal of the Geological Society of India, 94, 188-196. https://doi.org/10.1007/s12594-019-1288-4
[27]
Pandey, A., & Chalapathi Rao, N. V. (2019). Coupled Assimilation and Fractional Crystallization (AFC) and Mantle Plume Source(s) Contribution in the Generation of Paleoproterozoic Mafic Dykes of the Eastern Dharwar Craton, Southern India. Journal of the Geological Society of India, 93, 157-162. https://doi.org/10.1007/s12594-019-1144-6
[28]
Pandey, A., Chalapathi Rao, N. V., Chakrabarti, R., Pankaj, P., Pandit, D., Pandey, R. et al. (2018). Post-collisional Calc-Alkaline Lamprophyres from the Kadiri Greenstone Belt: Evidence for the Neoarchean Convergence-Related Evolution of the Eastern Dharwar Craton and Its Schist Belts. Lithos, 320, 105-117. https://doi.org/10.1016/j.lithos.2018.09.005
[29]
Pankaj, P., Giri, R. K., Chalapathi Rao, N. V., Chakrabarti, R., & Raghuvanshi, S. (2020). Mineralogy and Petrology of Shoshonitic Lamprophyre Dykes from the Sivarampeta Area, Diamondiferous Wajrakarur Kimberlite Field, Eastern Dharwar Craton, Southern India. Journal of Mineralogical and Petrological Sciences, 115, 202-215. https://doi.org/10.2465/jmps.191004b
[30]
Prabhakara Prasad, P., Satish Kumar, K., Seshunarayana, T., & Rama Rao, C. (2013). New Approach for Interpretation of Scattered Ground Magnetic Data in a Part of Delhi Fold Belt-NW Indian Shield. Arabian Journal of Geosciences, 7, 2633-2639. https://doi.org/10.1007/s12517-013-0926-1
[31]
Radhakrishna, M., Twinkle, D., Nayak, S., Bastia, R., & Rao, G. S. (2012). Crustal Structure and Rift Architecture across the Krishna-Godavari Basin in the Central Eastern Continental Margin of India Based on Analysis of Gravity and Seismic Data. Marine and Petroleum Geology, 37, 129-146. https://doi.org/10.1016/j.marpetgeo.2012.05.005
[32]
Raghuvanshi, S., Pandey, A., Pankaj, P., Rao, N. V. C., Chakrabarti, R., Pandit, D. et al. (2019). Lithosphere-Asthenosphere Interaction and Carbonatite Metasomatism in the Genesis of Mesoproterozoic Shoshonitic Lamprophyres at Korakkodu, Wajrakarur Kimberlite Field, Eastern Dharwar Craton, Southern India. Geological Journal, 54, 3060-3077. https://doi.org/10.1002/gj.3468
[33]
Ramadass, G., Himabindu, D., & Veeraiah, B. (2006). Morphostructural Prognostication of Kimberlites in Parts of Eastern Dharwar Craton: Inferences from Remote Sensing and Gravity Signatures. Journal of the Indian Society of Remote Sensing, 34, 111-121. https://doi.org/10.1007/bf02991816
[34]
Ramadass, G., Ramaprasada Rao, I. B., & Srinivasulu, N. (2001). Gravity Inferred Subsurface Structure of Gadwal Schist Belt, Andhra Pradesh. Journal of Earth System Science, 110, 25-32. https://doi.org/10.1007/bf02702227
[35]
Ramakrishnan, M., & Vaidyanadhan, R. (2008). Geology of India. Geological Society of India.
[36]
Rao, G. S., Kumar, M., & Radhakrishna, M. (2018). Structure, Mechanical Properties and Evolution of the Lithosphere Below the Northwest Continental Margin of India. International Journal of Earth Sciences, 107, 2191-2207. https://doi.org/10.1007/s00531-018-1594-x
[37]
Rao, K. R. P., Reddy, T. A. K., Rao, K. V. S., Rao, K. S. B., & Rao, N. V. (1999). Geology, Petrology and Geochemistry of Narayanpet Kimberlites in Andhra Pradesh and Karnataka. Journal Geological Society of India, 52, 663-676. https://doi.org/10.17491/jgsi/1998/520605
[38]
Reid, A. B., & Thurston, J. B. (2014). The Structural Index in Gravity and Magnetic Interpretation: Errors, Uses, and Abuses. Geophysics, 79, J61-J66. https://doi.org/10.1190/geo2013-0235.1
[39]
Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic Interpretation in Three Dimensions Using Euler Deconvolution. Geophysics, 55, 80-91. https://doi.org/10.1190/1.1442774
[40]
Satish Kumar, K. S., Begum, S. P., Srinivas, G. S., Rao, M. S. H., Prasad, P. P., Seshunarayna, T. et al. (2018). Spectral Analysis of Magnetic Data in the Ajmer-Sambar Sector, North-Central Rajasthan. Journal of the Geological Society of India, 92, 368-372. https://doi.org/10.1007/s12594-018-1022-7
[41]
Satish Kumar, K., SivaSankar, P., Parveen Begum, S., Laxman, B., Mahesh Devidas, P., Maha Laxmi Naidu, V. et al. (2021). Appraisal of Veldurti-Kalva-Gani (VKG) Fault, Cuddapah Basin, India: Gravity and Magnetic Approach. Journal of Earth System Science, 130, Article No. 40. https://doi.org/10.1007/s12040-020-01519-5
[42]
Shivanna, S., Srivastava, J. K., & Nambiar, A. R. (2002). Kimberlite Occurrence in Raichur Area, Karnataka, Comments by Madhavan, V. Journal Geological Society of India, 60, 478-480.
[43]
Singh, A. P., & Mishra, D. C. (2002). Tectonosedimentary Evolution of Cuddapah Basin and Eastern Ghats Mobile Belt (India) as Proterozoic Collision: Gravity, Seismic and Geodynamic Constraints. Journal of Geodynamics, 33, 249-267. https://doi.org/10.1016/s0264-3707(01)00066-7
[44]
Singh, B., Prabhakara Rao, M. R. K., Prajapati, S. K., & Swarnapriya, C. (2014). Combined Gravity and Magnetic Modeling over Pavagadh and Phenaimata Igneous Complexes, Gujarat, India: Inference on Emplacement History of Deccan Volcanism. Journal of Asian Earth Sciences, 80, 119-133. https://doi.org/10.1016/j.jseaes.2013.11.005
[45]
Singh, M. R., Singh, A. K., Santosh, M., Lingadevaru, M., & Lakhan, N. (2020). Neoarchean Arc‐back Arc Subduction System in the Indian Peninsula: Evidence from Mafic Magmatism in the Shimoga Greenstone Belt, Western Dharwar Craton. Geological Journal, 55, 5308-5329. https://doi.org/10.1002/gj.3733
[46]
Smith, C. B., Bulanova, G., Meenakshisundaram, V., & Jaques, L. (2017). A Tale of Three Lamproites, Their Diamonds and Settings—Bunder, Majhgawan and Argyle. In 11th International Kimberlite ConferenceExtended Abstract No. 11IKC-4521, 2017 (pp. 1-3). https://ikcabstracts.com/index.php/ikc/article/download/3889/3889/3875
[47]
Smithson, S. B. (1971). Densities of Metamorphic Rocks. Geophysics, 36, 690-694. https://doi.org/10.1190/1.1440205
[48]
Spector, A., & Bhattacharyya, B. K. (1966). Energy Density Spectrum and Autocorrelation Function of Anomalies Due to Simple Magnetic Models. Geophysical Prospecting, 14, 242-272. https://doi.org/10.1111/j.1365-2478.1966.tb01760.x
[49]
Spector, A., & Grant, F. S. (1970). Statistical Models for Interpreting Aeromagnetic Data. Geophysics, 35, 293-302. https://doi.org/10.1190/1.1440092
[50]
Sreehari, L., Toyoshima, T., Satish-Kumar, M., Takahashi, T., & Ueda, H. (2021). Structural and Geochemical Evidence for a Failed Rift Crustal Evolution Model in Western Dharwar Craton, South India. Lithos, 388, Article ID: 106020. https://doi.org/10.1016/j.lithos.2021.106020
[51]
Subrahmanyam, C., & Verma, R. K. (1982). Gravity Interpretation of the Dharwar Greenstone-Gneiss-Granite Terrain in the Southern Indian Shield and Its Geological Implications. Tectonophysics, 84, 225-245. https://doi.org/10.1016/0040-1951(82)90161-5
[52]
Sushel, A., Sufija M. V, & Ravi, S. (2016). Report on Search for Kimberlites/Lamproite in Kollapur-Srirangapur Blocks in Parts of MahabubnagarDisrticts, Telangana State and Kurnool District of Andhra Pradesh. GSI Report.
[53]
Tripathy, V., & Saha, D. (2013). Plate Margin Paleostress Variations and Intracontinental Deformations in the Evolution of the Cuddapah Basin through Proterozoic. Precambrian Research, 235, 107-130. https://doi.org/10.1016/j.precamres.2013.06.005
[54]
Vani, T., Naga Lakshmi, V., Ramakrishnarao, M. V., Randy Keller, G., & Subbarao, K. V. (2013). Integration of Geophysical and Geological Data of Kimberlites in Narayanpet–maddur Field, Andhra Pradesh, India. In Proceedings of 10th International Kimberlite Conference (pp. 229-239). Springer. https://doi.org/10.1007/978-81-322-1173-0_15
[55]
Vasanthi, A., & Mallick, K. (2005). Bouguer Gravity Anomalies and Occurrence Patterns of Kimberlite Pipes in Narayanpet-Maddur Regions, Andhra Pradesh, India. Geophysics, 70, J13-J24. https://doi.org/10.1190/1.1852778
[56]
Veeraiah, B., Ramadass, G., & Himabindu, D. (2009). A Subsurface Criterion for Predictive Exploration of Kimberlites from Bouguer Gravity in the Eastern Dharwar Craton, India. Journal of the Geological Society of India, 74, 69-77. https://doi.org/10.1007/s12594-009-0105-x
[57]
Yadav, P. K., Adhikari, P. K., Srivastava, S., Maurya, V. P., Tripathi, A., Singh, S. et al. (2018). Lithologic Boundaries from Gravity and Magnetic Anomalies over Proterozoic Dalma Volcanics. Journal of Earth System Science, 127, Article No. 17. https://doi.org/10.1007/s12040-018-0918-3