全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of NOx Emissions in Combustion Engines for Thermoelectric Power Plants: An Approach with the R and Screen View Programs

DOI: 10.4236/gep.2025.132011, PP. 161-176

Keywords: Atmospheric Emissions, Internal Combustion Engines, Thermal Power Plants

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thermal power plants are present in the Brazilian electrical matrix (8% in 2022) and worldwide (61.5% in 2021). Combustion engines are used to drive generators in most thermal power plants, serving as the main sources of atmospheric emissions. This study aims to present a model that allows for the pre-selection of these engines, identifying those most suitable to the recommended standards for obtaining environmental licenses. Data from twelve engine models were used to evaluate the studied alternatives. Computational resources were utilized through the R program for statistical analysis of the data. Simulations with the Screen View software enabled the investigation of atmospheric dispersion scenarios. The study showed that dispersion presented significant correlations with the following variables: emission rate, with a significance of 0.60, and chimney height, with a significance of ?0.57. It was possible to conclude that for wind speeds equal to or greater than the local annual average of 2.1 m/s, a distance of 1800 meters to the community (location of the thermal power plant), a flue gas exit speed of 35 m/s, and the analyzed engine standards and design, engines with a NOx emission rate of up to 3.0 g/kWh showed good dispersion values, below 200 mg/Nm3 of NOx, the standard required by Brazilian environmental legislation. Thus, only four engine models meet this condition.

References

[1]  Ahmadi, M. H., Ahmadi, M., Açıkkalp, E., Alhuyi Nazari, M., Arab Pour Yazdi, M., & Kumar, R. (2018). New Thermodynamic Analysis and Optimization of Performance of an Irreversible Diesel Cycle. Environmental Progress & Sustainable Energy, 37, 1475-1490.
https://doi.org/10.1002/ep.12810
[2]  Alnahdi, A., Elkamel, A., Shaik, M. A., Al-Sobhi, S. A., & Erenay, F. S. (2019). Optimal Production Planning and Pollution Control in Petroleum Refineries Using Mathematical Programming and Dispersion Models. Sustainability, 11, Article No. 3771.
https://doi.org/10.3390/su11143771
[3]  Beunza, J., Puertas, E., García-Ovejero, E., Villalba, G., Condes, E., Koleva, G. et al. (2019). Comparison of Machine Learning Algorithms for Clinical Event Prediction (Risk of Coronary Heart Disease). Journal of Biomedical Informatics, 97, Article ID: 103257.
https://doi.org/10.1016/j.jbi.2019.103257
[4]  Brusca, S., Famoso, F., Lanzafame, R., Mauro, S., Garrano, A. M. C., & Monforte, P. (2016). Theoretical and Experimental Study of Gaussian Plume Model in Small Scale System. Energy Procedia, 101, 58-65.
https://doi.org/10.1016/j.egypro.2016.11.008
[5]  Burren, A., & Pietsch, C. (2021). Distress Regulates Different Pathways in the Brain of Common Carp: A Preliminary Study. Animals, 11, Article No. 585.
https://doi.org/10.3390/ani11020585
[6]  Capelli, L., Sironi, S., Del Rosso, R., & Guillot, J. (2013). Measuring Odours in the Environment vs. Dispersion Modelling: A Review. Atmospheric Environment, 79, 731-743.
https://doi.org/10.1016/j.atmosenv.2013.07.029
[7]  Chandra, Y., & Shang, L. (2019). Qualitative Research Using R: A Systematic Approach. Springer.
[8]  Cheshmehzangi, A., Li, Y., Li, H., Zhang, S., Huang, X., Chen, X. et al. (2022). A Hierarchical Study for Urban Statistical Indicators on the Prevalence of COVID-19 in Chinese City Clusters Based on Multiple Linear Regression (MLR) and Polynomial Best Subset Regression (PBSR) Analysis. Scientific Reports, 12, Article No. 1964.
https://doi.org/10.1038/s41598-022-05859-8
[9]  Clementoni, E. M., Cox, T. L., & Sprague, C. P. (2014). Startup and Operation of a Supercritical Carbon Dioxide Brayton Cycle. Journal of Engineering for Gas Turbines and Power, 136, Article ID: 071701.
https://doi.org/10.1115/1.4026539
[10]  Dayal, V. (2015). R and RStudio. In An Introduction to R for Quantitative Economics (pp. 7-14). Springer.
[11]  Dedes, E. K., Hudson, D. A., & Turnock, S. R. (2012). Assessing the Potential of Hybrid Energy Technology to Reduce Exhaust Emissions from Global Shipping. Energy Policy, 40, 204-218.
https://doi.org/10.1016/j.enpol.2011.09.046
[12]  Dogan, N. O., & Tugcu, C. T. (2015). Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries. International Journal of Energy Economics and Policy, 5, 246-252.
https://www.econjournals.com/index.php/ijeep/article/view/1043
[13]  Elzalik, M., Rezk, H., Mostafa, R., Thomas, J., & Shehata, E. G. (2020). An Experimental Investigation on Electrical Performance and Characterization of Thermoelectric Generator. International Journal of Energy Research, 44, 128-143.
https://doi.org/10.1002/er.4873
[14]  Espinosa, J. F. M., & Luna, M. A. G. (2021). Uso del modelo de dispersión de contaminantes Screen View (pp. 1-34). Notas de Campus.
[15]  Favre-Perrod, P. (2005). A Vision of Future Energy Networks. In Proceedings of the Inaugural IEEE PES 2005 Conference and Exposition in Africa (pp. 13-17). IEEE.
https://doi.org/10.1109/pesafr.2005.1611778
[16]  Gott, R. C., Coffey, P. L., & Bechtel, M. (2019). Evaluation of Behavior-Based Deterrence of Imported Cabbageworm in Collards, 2017. Arthropod Management Tests, 44, tsz004.
https://doi.org/10.1093/amt/tsz004
[17]  Grömping, U. (2015). Using R and RStudio for Data Management, Statistical Analysis and Graphics. Journal of Statistical Software, 68, 1-7.
[18]  Holmes, N. S., & Morawska, L. (2006). A Review of Dispersion Modelling and Its Application to the Dispersion of Particles: An Overview of Different Dispersion Models Available. Atmospheric Environment, 40, 5902-5928.
https://doi.org/10.1016/j.atmosenv.2006.06.003
[19]  Kassambara, A. (2017). R Graphics Essentials for Great Data Visualization: 200 Practical Examples You Want to Know for Data Science. STHDA.
https://www.sthda.com/english/articles/32-r-graphics-essentials/134-r-basics-for-data-visualization/
[20]  Khaliq, A., Habib, M. A., & Choudhary, K. (2019). A Thermo-Environmental Evaluation of a Modified Combustion Gas Turbine Plant. Journal of Energy Resources Technology, 141, Article ID: 042004.
https://doi.org/10.1115/1.4041898
[21]  Komperda, R. (2017). Likert-Type Survey Data Analysis with R and Rstudio. In Computer-Aided Data Analysis in Chemical Education Research (CADACER): Advances and Avenues (pp. 91-116). American Chemical Society.
https://doi.org/10.1021/bk-2017-1260.ch007
[22]  Kronthaler, F., & Zöllner, S. (2021). Testing Normal Distribution with RStudio. In F. Kronthaler, & S. Zöllner (Eds.), Data Analysis with RStudio (pp. 59-63). Springer.
https://doi.org/10.1007/978-3-662-62518-7_5
[23]  Kumar, R. V. (2021). Exploratory Data Analysis Using R & RStudio.
[24]  Kurzydym, D., Żmudka, Z., Perrone, D., & Klimanek, A. (2022). Experimental and Numerical Investigation of Nitrogen Oxides Reduction in Diesel Engine Selective Catalytic Reduction System. Fuel, 313, Article ID: 122971.
https://doi.org/10.1016/j.fuel.2021.122971
[25]  Macek, P., Biskup, M., Terek-Derszniak, M., Krol, H., Smok-Kalwat, J., Gozdz, S. et al. (2020). Optimal Cut-Off Values for Anthropometric Measures of Obesity in Screening for Cardiometabolic Disorders in Adults. Scientific Reports, 10, Article ID: 11253.
https://doi.org/10.1038/s41598-020-68265-y
[26]  Mehdizadeh, F., & Rifai, H. S. (2004). Modeling Point Source Plumes at High Altitudes Using a Modified Gaussian Model. Atmospheric Environment, 38, 821-831.
https://doi.org/10.1016/j.atmosenv.2003.10.041
[27]  Mello, K. d., Valente, R. A., Randhir, T. O., & Vettorazzi, C. A. (2018). Impacts of Tropical Forest Cover on Water Quality in Agricultural Watersheds in Southeastern Brazil. Ecological Indicators, 93, 1293-1301.
https://doi.org/10.1016/j.ecolind.2018.06.030
[28]  Ministry of Environment of Brazil (2007). CONAMA Resolution 382: Establishes Maximum Emission Limits for Atmospheric Pollutants from Stationary Sources (pp. 131-137). Official Gazette of the Union, No. 1.
https://conama.mma.gov.br
[29]  Ministry of Environment of Brazil (2018). CONAMA Resolution 491: Establishes Air Quality Standards (p. 155). Official Gazette of the Union, No. 223, Section 1.
https://conama.mma.gov.br
[30]  Musthafa, M. M., Abdullah, F., & Koivula, M. J. (2022). The Functioning of Different Beetle (Coleoptera) Sampling Methods across Altitudinal Gradients in Peninsular Malaysia. PLOS ONE, 17, e0266076.
https://doi.org/10.1371/journal.pone.0266076
[31]  Nemitallah, M. A., Rashwan, S. S., Mansir, I. B., Abdelhafez, A. A., & Habib, M. A. (2018). Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines. Energy & Fuels, 32, 979-1004.
https://doi.org/10.1021/acs.energyfuels.7b03607
[32]  Ni, P., Wang, X., & Li, H. (2020). A Review on Regulations, Current Status, Effects and Reduction Strategies of Emissions for Marine Diesel Engines. Fuel, 279, Article ID: 118477.
https://doi.org/10.1016/j.fuel.2020.118477
[33]  Paraschiv, S., Coman, G., & Paraschiv, L. S. (2019). Simulation of Plume Dispersion Emitted from Industrial Sources Based on Gaussian Model. AIP Conference Proceedings, 2123, Article ID: 020059.
https://doi.org/10.1063/1.5116986
[34]  Parsons, L., Rodriguez, O., & Holding, D. R. (2021). Improved Taste and Texture in Novel Popcorn Varieties Compared to Conventional Lines. Journal of Sensory Studies, 36, e12687.
https://doi.org/10.1111/joss.12687
[35]  Pongrac, P., Fischer, S., Thompson, J. A., Wright, G., & White, P. J. (2020). Early Responses of Brassica Oleracea Roots to Zinc Supply under Sufficient and Sub-Optimal Phosphorus Supply. Frontiers in Plant Science, 10, Article No. 1645.
https://doi.org/10.3389/fpls.2019.01645
[36]  Racine, J. S. (2012). RStudio: A Platform-Independent IDE for R and Sweave.
[37]  Real, D., Bennett, R. G., Nazeri, N. K., & Weaver, D. M. (2022). Critical P, K and S Concentrations in Soil and Shoot Samples for Optimal Tedera Productivity and Nodulation. Agronomy, 12, Article No. 1581.
https://doi.org/10.3390/agronomy12071581
[38]  Ruxton, G. D., Wilkinson, D. M., & Neuhäuser, M. (2015). Advice on Testing the Null Hypothesis That a Sample Is Drawn from a Normal Distribution. Animal Behaviour, 107, 249-252.
https://doi.org/10.1016/j.anbehav.2015.07.006
[39]  Silva, G. N. D., Nery, L. A. S. S., & Júnior, L. T. K. (2017). Economic-Financial Analysis of an Investment of Tanks for ARLA 32 at the Fleet of a Transportation Company. Independent Journal of Management & Production, 8, 583-595.
[40]  Turner, D. B. (2020). Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling. CRC Press.
[41]  Zhong, S., Zhou, L., & Wang, Z. (2011). Software for Environmental Impact Assessment of Air Pollution Dispersion Based on Arcgis. Procedia Environmental Sciences, 10, 2792-2797.
https://doi.org/10.1016/j.proenv.2011.09.433

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133