There is evidence that the development of plant communities determines the composition and structure of the orthoptera assemblages. This is the reason for using the orthoptera biodiversity as an indicator of environmental recovery processes in revegetated areas. This research is a part of the monitoring actions included in the Bre?a’s Compensation Project, linked to the construction of the Bre?a II damp. It is aimed to assess the biodiversity of the Orthopteran assemblages settled in the restored river copses after nine years following (2007-2016). The results will be interpreted as an indirect measure of the success of the environmental improvement performed. In 2016, two forest farms named “Las Mesas” and “Cerro del Trigo” located in the Sierra de Hornachuelos Natural Park (Córdoba, Southern Iberian Peninsula) were selected for monitoring. These sampling sites were also selected in a previous following phase, which makes comparisons easier and more reliable. At each of these sampling sites, two revegetated enclosures corresponding to the environmental model “restored river copses” and their respective control areas were selected for the study. From the values of the specimen’s number recorded in each sampling plot, the same population indices that in the previous phase (Richness, Abundance, Dominance, Shannon Diversity, and Evenness) were calculated. The diversity profiles using Rényi’s family of uni-parametric diversity indices were also obtained. Differences in the indices were statistically tested by resampling bootstrapping for inferential statistics. Based on our results, the environmental differences between revegetated and control areas have not led to significant changes in the composition and structure of the orthopteran communities they host. In consequence, the environmental restoration carried out in the study area has not been as successful as could be expected and the previous environmental alterations have not been minimized nor have those derived from the environmental rehabilitation itself been compensated.
References
[1]
Lindenmayer, D. (2020) Improving Restoration Programs through Greater Connection with Ecological Theory and Better Monitoring. Frontiers in Ecology and Evolution, 8, Article 50. https://doi.org/10.3389/fevo.2020.00050
[2]
An, J.H., Lim, B.S., Seol, J., Kim, A.R., Lim, C.H., Moon, J.S., et al. (2022) Evaluation on the Restoration Effects in the River Restoration Projects Practiced in South Korea. Water, 14, Article 2739. https://doi.org/10.3390/w14172739
[3]
Ockendon, N., Thomas, D.H.L., Cortina, J., Adams, W.M., Aykroyd, T., Barov, B., et al. (2018) One Hundred Priority Questions for Landscape Restoration in Europe. Biological Conservation, 221, 198-208. https://doi.org/10.1016/j.biocon.2018.03.002
[4]
Reif, M.K. and Theel, H.J. (2016) Remote Sensing for Restoration Ecology: Application for Restoring Degraded, Damaged, Transformed, or Destroyed Ecosystems. Integrated Environmental Assessment and Management, 13, 614-630. https://doi.org/10.1002/ieam.1847
[5]
Resco de Dios, V., Fischer, C. and Colinas, C. (2006) Climate Change Effects on Mediterranean Forests and Preventive Measures. New Forests, 33, 29-40. https://doi.org/10.1007/s11056-006-9011-x
[6]
Crossman, N.D., Bernard, F., Egoh, B., Kalaba, F., Lee, N. and Moolenaar, S. (2016) The Role of Ecological Restoration and Rehabilitation in Production Landscapes: An Enhanced Approach to Sustainable Development. Working Paper for the UNCCD Global Land Outlook.
[7]
Papageorgiou, A.C. (2003) Forest Landscape Restoration in a Mediterranean Context. https://dx.doi.org/10.13140/RG.2.1.1876.7846
[8]
Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., et al. (2017) Impacts of Global Change on Mediterranean Forests and Their Services. Forests, 8, Article 463. https://doi.org/10.3390/f8120463
[9]
Peñuelas, J. and Sardans, J. (2021) Global Change and Forest Disturbances in the Mediterranean Basin: Breakthroughs, Knowledge Gaps, and Recommendations. Forests, 12, Article 603. https://doi.org/10.3390/f12050603
[10]
Arduino, S. (2021) Forest and Landscape Restoration Practices in the Mediterranean: A Survey. Medforval/Instituto Oikos, Italy.
[11]
Jin, Z., Dong, Y., Wang, Y., Wei, X., Wang, Y., Cui, B., et al. (2014) Natural Vegetation Restoration Is More Beneficial to Soil Surface Organic and Inorganic Carbon Sequestration than Tree Plantation on the Loess Plateau of China. Science of the Total Environment, 485, 615-623. https://doi.org/10.1016/j.scitotenv.2014.03.105
[12]
Sliacka, A., Krištín, A. and Naďo, L. (2013) Response of Orthoptera to Clear-Cuts in Beech Forests. European Journal of Entomology, 110, 319-326. https://doi.org/10.14411/eje.2013.045
[13]
Hernández, M., Muela, P. and Sandoval, A. (2018) La Compensación Ecológica, un Paso más allá de la Corrección Ambiental, Presa de la Breña II. Ambienta, 123, 40-53. https://www.revistaambienta.es/es/numeros-anteriores/123.html
[14]
Moyano, L., Cárdenas, A.M., Gallardo, P. and Presa, J.J. (2014) Short-Term Effects of a Revegetation Program on the Orthopteran Diversity in Oak Forests of the Southern Iberian Peninsula. Journal of Insect Science, 14, ieu152. https://doi.org/10.1093/jisesa/ieu152
[15]
Habitats Directive and Council Directive 92/43/EEC (1992) On the Conservation of Natural Habitats and of Wild Fauna and Flora. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01992L0043-20130701
[16]
McElhinny, C., Gibbons, P., Brack, C. and Bauhus, J. (2005) Forest and Woodland Stand Structural Complexity: Its Definition and Measurement. Forest Ecology and Management, 218, 1-24. https://doi.org/10.1016/j.foreco.2005.08.034
[17]
De Andrés, C., Cosano, I. and Pereda, N. (2003) Manual para la Diversificación del Paisaje Agrario. Consejería de Medio Ambiente, Junta de Andalucía, Comité Andaluz de Agricultura Ecológica (CAAE), Seville, Spain.
[18]
Aquavir: Aguas de la Cuenca del Guadalquivir S.L. (2000) Primer Modificado del Proyecto de Compensación de Terrenos Afectados y Medidas Correctoras para la Construcción de la Presa de la Breña II. T.M. Almodóvar del Río. Aguas de la Cuenca del Guadalquivir. S.A. Seville, Spain.
[19]
Fundación Biodivesidad (2022) Guía para la Medición y Seguimiento de Indicadores. Plan de Recupeación, Transformación y Resiliencia. Ministerio para la Transición Ecológica y Reto demográfico. Gobierno de España. Madrid. 37 p.
[20]
Pakkala, T., Lindén, A., Tiainen, J., Tomppo, E. and Kouki, J. (2014) Indicators of Forest Biodiversity: Which Bird Species Predict High Breeding Bird Assemblage Diversity in Boreal Forests at Multiple Spatial Scales? Annales Zoologici Fennici, 51, 457-476. https://doi.org/10.5735/086.051.0501
[21]
Bazelet, C.S. and Samways, M.J. (2011) Identifying Grasshopper Bioindicators for Habitat Quality Assessment of Ecological Networks. Ecological Indicators, 11, 1259-1269. https://doi.org/10.1016/j.ecolind.2011.01.005
[22]
Alignan, J., Debras, J. and Dutoit, T. (2018) Orthoptera Prove Good Indicators of Grassland Rehabilitation Success in the First French Natural Asset Reserve. Journal for Nature Conservation, 44, 1-11. https://doi.org/10.1016/j.jnc.2018.04.002
[23]
Kenyeres, Z. and Cservenka, J. (2014) Effects of Climate Change and Various Grassland Management Practices on Grasshopper (Orthoptera) Assemblages. Advances in Ecology, 2014, 1-10. https://doi.org/10.1155/2014/601813
[24]
Torma, A. and Bozso, M. (2016) Effects of Habitat and Landscape Features on Grassland Orthoptera on Floodplains in the Lower Reaches of the Tisza River Basin. European Journal of Entomology, 113, 60-69. https://doi.org/10.14411/eje.2016.007
[25]
Zografou, K., Adamidis, G.C., Komnenov, M., Kati, V., Sotirakopoulos, P., Pitta, E., et al. (2017) Diversity of Spiders and Orthopterans Respond to Intra-Seasonal and Spatial Environmental Changes. Journal of Insect Conservation, 21, 531-543. https://doi.org/10.1007/s10841-017-9993-z
[26]
Heneberg, P., Hesoun, P. and Skuhrovec, J. (2016) Succession of Arthropods on Xerothermophilous Habitats Formed by Sand Quarrying: Epigeic Beetles (Coleoptera) and Orthopteroids (Orthoptera, Dermaptera and Blattodea). Ecological Engineering, 95, 340-356. https://doi.org/10.1016/j.ecoleng.2016.06.022
[27]
Borchard, F., Schulte, A.M. and Fartmann, T. (2013) Rapid Response of Orthoptera to Restoration of Montane Heathland. Biodiversity and Conservation, 22, 687-700. https://doi.org/10.1007/s10531-013-0438-z
[28]
Alignan, J., Debras, J. and Dutoit, T. (2014) Effects of Ecological Restoration on Orthoptera Assemblages in a Mediterranean Steppe Rangeland. Journal of Insect, 18, 1073-1085. https://doi.org/10.1007/s10841-014-9717-6
[29]
Estrela-Segrelles, C., Gómez-Martínez, G. and Pérez-Martín, M.Á. (2023) Climate Change Risks on Mediterranean River Ecosystems and Adaptation Measures (Spain). Water Resources Management, 37, 2757-2770. https://doi.org/10.1007/s11269-023-03469-1
[30]
Fartmann, T., Krämer, B., Stelzner, F. and Poniatowski, D. (2012) Orthoptera as Ecological Indicators for Succession in Steppe Grassland. Ecological Indicators, 20, 337-344. https://doi.org/10.1016/j.ecolind.2012.03.002
[31]
Fartmann, T., Behrens, M. and Loritz, H. (2008) Orthopteran Communities in the Conifer-Broadleaved Woodland Zone of the Russian Far East. European Journal of Entomology, 105, 673-680. https://doi.org/10.14411/eje.2008.091
[32]
Arnóczkyné Jakab, D. and Nagy, A. (2021) Data on the Orthoptera Fauna of Characteristic Agricultural Landscape in the Carpathian Lowland. Acta AgrariaDebreceniensis, 1, 25-34. https://doi.org/10.34101/actaagrar/1/8495
[33]
Gardiner, T., Kuramoto, N. and Matsuba, M. (2019) Big in Japan: The Importance of Riparian Corridors for Orthoptera. Journal of Orthoptera Research, 28, 27-35. https://doi.org/10.3897/jor.28.31380
[34]
Kenyeres, Z. (2020) Rapid Succession of Orthopteran Assemblages Driven by Patch Size and Connectivity. Rangeland Ecology & Management, 73, 838-846. https://doi.org/10.1016/j.rama.2020.07.004
[35]
Ruiz-Jaen, M.C. and Mitchell Aide, T. (2005) Restoration Success: How Is It Being Measured? Restoration Ecology, 13, 569-577. https://doi.org/10.1111/j.1526-100x.2005.00072.x
[36]
Cárdenas, A.M., Hidalgo, J.M., Moyano, L. and Gallardo, P. (2010) The Effect of a Restoration Program on the Orthopteran Diversity from a Protected Area in the Southern Iberian Peninsula. 7th SER Conference of the Society for Ecological Restoration, Avignon, 23–27 August 2010, 144.
[37]
Cárdenas, A.M. and Gallardo, P. (2012) The Effect of Temperature on the Preimaginal Development of the Jewel Beetle, Coraebus Florentinus (Coleoptera: Buprestidae). European Journal of Entomology, 109, 21-28. https://doi.org/10.14411/eje.2012.004
[38]
Poniatowski, D. and Fartmann, T. (2008) The Classification of Insect Communities: Lessons from Orthopteran Assemblages of Semi-Dry Calcareous Grasslands in Central Germany. European Journal of Entomology, 105, 659-671. https://doi.org/10.14411/eje.2008.090
[39]
Picaud, F. and Petit, D.P. (2007) Primary Succession of Orthoptera on Mine Tailings: Role of Vegetation. Annales de la Société entomologique de France, 43, 69-79. https://doi.org/10.1080/00379271.2007.10697496
[40]
Gardiner, T. and Hill, J. (2006) A Comparison of Three Sampling Techniques Used to Estimate the Population Density and Assemblage Diversity of Orthoptera. Journal of Orthoptera Research, 15, 45-51. https://doi.org/10.1665/1082-6467(2006)15[45:acotst]2.0.co;2
[41]
Tóthmérész, B. (1998) On the Characterization of Scale Dependent Diversity. Abstracta Botanica, 22, 149-156.
[42]
Tóthmérész, B. (1995) Comparison of Different Methods for Diversity Ordering. Journal of Vegetation Science, 6, 283-290. https://doi.org/10.2307/3236223
[43]
Moreno, C.E., Barragán, F., Pineda, E. and Pavón, N.P. (2011) Reanálisis de la diversidad alfa: Alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana de Biodiversidad, 82, 1249-1261. https://doi.org/10.22201/ib.20078706e.2011.4.745
[44]
Abrams, J.F., Sollmann, R., Mitchell, S.L., Struebig, M.J. and Wilting, A. (2021) Occupancy‐based Diversity Profiles: Capturing Biodiversity Complexities While Accounting for Imperfect Detection. Ecography, 44, 975-986. https://doi.org/10.1111/ecog.05577
[45]
Hammer, Ø. and Harper, D.A.T. (2024) Paleontological Data Analysis. Wiley. https://doi.org/10.1002/9781119933960
[46]
Rochowicz, J.A. (2011) Bootstrapping Analysis, Inferential Statistics and EXCEL. Spreadsheets in Education. Spreadsheets in Education, 4, 1-23. https://sie.scholasticahq.com/article/4573-bootstrapping-analysis-inferential-statistics-and-excel
[47]
Hammer, Ø., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 1-9.
[48]
Kemp, W.P., O’Neill, K.M., Cigliano, M.M. and Torrusio, S. (2002) Field-Scale Variations in Plant and Grasshopper Communities: A GIS-Based Assessment. Transactions in GIS, 6, 115-133. https://doi.org/10.1111/1467-9671.00100
[49]
Mola, I., Sopeña, A. and de Torre, R. (2018) Guía Práctica de Restauración Ecológica. Fundación Biodiversidad del Ministerio para la Transición Ecológica. Madrid.
[50]
Kenyeres, Z., Szabó, S., Taká, G. and Szinetar, C. (2020) Orthoptera Assemblages as Indicators for the Restoration of Sand Grassland Networks. North-WesternJournal of Zoology, 16, 7-14.
[51]
Price, P.W., Denno, R.F., Eubanks, M.D., Finke, D.L. and Kaplan, I. (2011) Insect Ecology. Cambridge University Press. https://doi.org/10.1017/cbo9780511975387
[52]
Bieringer, G. (2003) Shading out Species Richness: Edge Effect of a Pine Plantation on the Orthoptera (Tettigoniidae and Acrididae) Assemblage of an Adjacent Dry Grassland. Biodiversity and Conservation, 12, 1481-1495. https://doi.org/10.1023/a:1023633911828
[53]
Marini, L., Fontana, P., Battisti, A. and Gaston, K.J. (2009) Response of Orthopteran Diversity to Abandonment of Semi-Natural Meadows. Agriculture, Ecosystems & Environment, 132, 232-236. https://doi.org/10.1016/j.agee.2009.04.003
[54]
Torma, A., Bozsó, M. and Gallé, R. (2018) Secondary Habitats Are Important in Biodiversity Conservation: A Case Study on Orthopterans along Ditch Banks. Animal Biodiversity and Conservation, 41, 97-108. https://doi.org/10.32800/abc.2018.41.0097
[55]
AEMET (2015) La Agencia Estatal de Meteorología. Ministerio para la transición ecológica y Reto demográfico. Gobierno de España. https://www.aemet.es/es/serviciosclimaticos
[56]
Báldi, A. and Kisbenedek, T. (1997) Orthopteran Assemblages as Indicators of Grassland Naturalness in Hungary. Agriculture, Ecosystems & Environment, 66, 121-129. https://doi.org/10.1016/s0167-8809(97)00068-6
[57]
Llucià-Pomares, D. (2002) Revisión de los Ortópteros (Insecta: Orthoptera) de Cataluña (España). Monografías de la Sociedad Entomológica Aragonesa, 7, 226 p.