全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

医用导管表面改性技术的研究进展与应用前景
Research Progress and Application Prospect of Surface Modification Technology for Medical Catheters

DOI: 10.12677/aac.2025.151007, PP. 61-71

Keywords: 医用导管,表面改性,水凝胶涂层,润滑液体注入多孔表面,静电纺丝
Medical Catheter
, Surface Modification, Hydrogel Coating, Lubricating Liquid Injection for Porous Surface, Electrospinning

Full-Text   Cite this paper   Add to My Lib

Abstract:

医用导管作为现代医疗中不可或缺的重要设备,广泛应用于药物输送、体液引流和病症诊疗等领域。其性能的优劣直接影响诊疗效果和患者的生命安全,而导管的材料和表面涂层的选择,则在改善其生物相容性、耐久性及抗菌性能方面起着至关重要的作用。文章系统性地综述了当前医用导管表面改性技术的研究进展,包括水凝胶涂层、润滑液体注入多孔表面、静电纺丝、沉积法以及等离子体处理法等。这些技术通过优化涂层的材料成分和微观结构,不仅显著提升了导管的抗菌性能、抗血栓能力和机械强度,还赋予其药物缓释、智能响应等多样化功能,为复杂医疗环境中的导管应用提供了重要解决方案。展望未来,生物可降解材料、纳米技术的引入以及材料科学与生物医学等多学科的深度融合,将为医用导管涂层的创新设计与临床转化提供强大动力,进一步推动其在精准医疗领域的广泛应用。
Medical catheters, as indispensable devices in modern healthcare, are widely used in drug delivery, fluid drainage, and disease diagnosis and treatment. Their performance directly influences therapeutic outcomes and patient safety. The selection of catheter materials and surface coatings plays a critical role in improving biocompatibility, durability, and antibacterial properties. This paper systematically reviews the current advancements in medical catheter surface modification technologies, including hydrogel coatings, lubricated liquid-infused porous surfaces, electrospinning, deposition methods, and plasma treatment. These technologies optimize the material composition and microstructure of coatings, significantly enhancing the antibacterial properties, thrombus resistance, and mechanical strength of catheters. Furthermore, they endow catheters with diverse functionalities, such as drug release and intelligent responsiveness, providing crucial solutions for catheter applications in complex medical environments. Looking to the future, the incorporation of biodegradable materials, nanotechnology, and the deep integration of materials science and biomedicine will drive innovative designs and clinical translation of catheter coatings, further advancing their applications in the field of precision medicine.

References

[1]  Toub, M., Shatto, S., 承旭. 硅橡胶材料在医疗导管中的应用[J]. 中国医疗器械信息, 2008, 14(8): 4-6, 74.
[2]  Tal, M.G. and Ni, N. (2008) Selecting Optimal Hemodialysis Catheters: Material, Design, Advanced Features, and Preferences. Techniques in Vascular and Interventional Radiology, 11, 186-191.
https://doi.org/10.1053/j.tvir.2008.09.006
[3]  Stewart, R.D. and Sanislow, C.A. (1961) Silastic Intravenous Catheter. New England Journal of Medicine, 265, 1283-1285.
https://doi.org/10.1056/nejm196112282652603
[4]  Wu, G., Wu, W., Pan, S., Zheng, Y.-X. and Lv, L. (2019) Nasointestinal Tube in Mechanical Ventilation Patients Is More Advantageous. Open Medicine, 14, 426-430.
https://doi.org/10.1515/med-2019-0045
[5]  田伏洲, 黄大熔, 黎冬暄, 等. 内镜鼻胆导管引流术预防急性胰腺炎重症化的前瞻性研究[J]. 中华消化杂志, 1997, 17(1): 52-53.
[6]  Adipurnama, I., Yang, M., Ciach, T. and Butruk-Raszeja, B. (2017) Surface Modification and Endothelialization of Polyurethane for Vascular Tissue Engineering Applications: A Review. Biomaterials Science, 5, 22-37.
https://doi.org/10.1039/c6bm00618c
[7]  Schierholz, J.M., Seyfert, U.T., Rump, A.F.E., Beuth, J. and Pulverer, G. (1999) Strategies for the Prevention of Catheter Material-Associated Thrombosis and Bloodstream Infections. Transfusion Medicine and Hemotherapy, 26, 278-287.
https://doi.org/10.1159/000053505
[8]  Boeykens, M., Keller, E.X., Bosio, A., Wiseman, O.J., Contreras, P., Ventimiglia, E., et al. (2022) Impact of Ureteral Stent Material on Stent-Related Symptoms: A Systematic Review of the Literature. European Urology Open Science, 45, 108-117.
https://doi.org/10.1016/j.euros.2022.09.005
[9]  Odman, P. (1959) The Radiopaque Polythene Catheter. Acta Radiologica, 52, 52-64.
https://doi.org/10.3109/00016925909171131
[10]  McGuire, B. and Hodge, K. (2022) Tracheal Intubation. Anaesthesia & Intensive Care Medicine, 23, 661-666.
https://doi.org/10.1016/j.mpaic.2022.08.002
[11]  杨柯, 任伊宾. 医用不锈钢的研究与发展[J]. 中国材料进展, 2010, 29(12): 1-10, 34.
[12]  Zhang, L. and Chen, L. (2019) A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Advanced Engineering Materials, 21, Article ID: 1801215.
https://doi.org/10.1002/adem.201801215
[13]  Abbas, A., Raza, A., Ullah, M., Hendi, A.A., Akbar, F., Khan, S.U., et al. (2023) A Comprehensive Review: Epidemiological Strategies, Catheterization and Biomarkers Used as a Bioweapon in Diagnosis and Management of Cardio Vascular Diseases. Current Problems in Cardiology, 48, Article 101661.
https://doi.org/10.1016/j.cpcardiol.2023.101661
[14]  Ouyang, H., Liu, Z., Li, N., Shi, B., Zou, Y., Xie, F., et al. (2019) Symbiotic Cardiac Pacemaker. Nature Communications, 10, Article No. 1821.
https://doi.org/10.1038/s41467-019-09851-1
[15]  Divatia, J.V. and Abraham, B. (2018) Multicenter Observational Study to Evaluate Epidemiology and Resistance Patterns of Common Intensive Care Unit-Infections. Indian Journal of Critical Care Medicine, 22, 20-26.
https://doi.org/10.4103/ijccm.ijccm_394_17
[16]  Mermel, L.A. (2017) Short-Term Peripheral Venous Catheter-Related Bloodstream Infections: A Systematic Review. Clinical Infectious Diseases, 65, 1757-1762.
https://doi.org/10.1093/cid/cix562
[17]  Kelly, T., Ai, C., Jung, M. and Yu, K. (2024) Catheter-Associated Urinary Tract Infections (CAUTIs) and Non-CAUTI Hospital-Onset Urinary Tract Infections: Relative Burden, Cost, Outcomes and Related Hospital-Onset Bacteremia and Fungemia Infections. Infection Control & Hospital Epidemiology, 45, 864-871.
https://doi.org/10.1017/ice.2024.26
[18]  Vazquez-Garza, E., Jerjes-Sanchez, C., Navarrete, A., Joya-Harrison, J. and Rodriguez, D. (2017) Venous Thromboembolism: Thrombosis, Inflammation, and Immunothrombosis for Clinicians. Journal of Thrombosis and Thrombolysis, 44, 377-385.
https://doi.org/10.1007/s11239-017-1528-7
[19]  Lee, S.C., Kwon, I.K. and Park, K. (2013) Hydrogels for Delivery of Bioactive Agents: A Historical Perspective. Advanced Drug Delivery Reviews, 65, 17-20.
https://doi.org/10.1016/j.addr.2012.07.015
[20]  Cheng, L., Liu, C., Wang, J., Wang, Y., Zha, W. and Li, X. (2022) Tough Hydrogel Coating on Silicone Rubber with Improved Antifouling and Antibacterial Properties. ACS Applied Polymer Materials, 4, 3462-3472.
https://doi.org/10.1021/acsapm.2c00069
[21]  Qi, Y., Zhang, Z., Ma, H., Cui, M., Yang, B., Wang, R., et al. (2023) Radiation Syntheses of Modified Poly (Lactic Acid) Fabrics with Hydrophilic and Antibacterial Properties. Progress in Organic Coatings, 176, Article 107393.
https://doi.org/10.1016/j.porgcoat.2022.107393
[22]  Yang, K., Han, Q., Chen, B., Zheng, Y., Zhang, K., Li, Q., et al. (2018) Antimicrobial Hydrogels: Promising Materials for Medical Application. International Journal of Nanomedicine, 13, 2217-2263.
https://doi.org/10.2147/ijn.s154748
[23]  Zhang, M., Wang, D., Ji, N., Lee, S., Wang, G., Zheng, Y., Zhang, X., Yang, L., Qin, Z. and Yang, Y. (2021) Bioinspired Design of Sericin/Chitosan/Ag@MOF/GO Hydrogels for Efficiently Combating Resistant Bacteria, Rapid Hemostasis, and Wound Healing. Polymers, 13, Article 2812.
https://doi.org/10.3390/polym13162812
[24]  Zhang, M., Wang, G., Wang, D., Zheng, Y., Li, Y., Meng, W., et al. (2021) Ag@MOF-Loaded Chitosan Nanoparticle and Polyvinyl Alcohol/Sodium Alginate/Chitosan Bilayer Dressing for Wound Healing Applications. International Journal of Biological Macromolecules, 175, 481-494.
https://doi.org/10.1016/j.ijbiomac.2021.02.045
[25]  Ding, K., Wang, Y., Liu, S., Wang, S. and Mi, J. (2021) Preparation of Medical Hydrophilic and Antibacterial Silicone Rubber via Surface Modification. RSC Advances, 11, 39950-39957.
https://doi.org/10.1039/d1ra06260c
[26]  Sun, C., Zhang, Y., Dong, F., Zhao, J., Zhang, P., Li, S., et al. (2024) Fast-Polymerized Lubricant and Antibacterial Hydrogel Coatings for Medical Catheters. Chemical Engineering Journal, 488, Article 150944.
https://doi.org/10.1016/j.cej.2024.150944
[27]  Li, H., Dai, C. and Hu, Y. (2023) Hydrogels for Chemical Sensing and Biosensing. Macromolecular Rapid Communications, 45, Article ID: 2300474.
https://doi.org/10.1002/marc.202300474
[28]  Li, Y., Li, D., Wang, J., Ye, T., Li, Q., Li, L., et al. (2023) A Temperature‐Sensing Hydrogel Coating on the Medical Catheter. Advanced Functional Materials, 34, Article ID: 2310260.
https://doi.org/10.1002/adfm.202310260
[29]  Chen, H., Zhang, P., Zhang, L., Liu, H., Jiang, Y., Zhang, D., et al. (2016) Continuous Directional Water Transport on the Peristome Surface of Nepenthes Alata. Nature, 532, 85-89.
https://doi.org/10.1038/nature17189
[30]  Wong, T., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., et al. (2011) Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature, 477, 443-447.
https://doi.org/10.1038/nature10447
[31]  Leslie, D.C., Waterhouse, A., Berthet, J.B., Valentin, T.M., Watters, A.L., Jain, A., et al. (2014) A Bioinspired Omniphobic Surface Coating on Medical Devices Prevents Thrombosis and Biofouling. Nature Biotechnology, 32, 1134-1140.
https://doi.org/10.1038/nbt.3020
[32]  Kasapgil, E., Badv, M., Cantú, C.A., Rahmani, S., Erbil, H.Y., Anac Sakir, I., et al. (2021) Polysiloxane Nanofilaments Infused with Silicone Oil Prevent Bacterial Adhesion and Suppress Thrombosis on Intranasal Splints. ACS Biomaterials Science & Engineering, 7, 541-552.
https://doi.org/10.1021/acsbiomaterials.0c01487
[33]  Grafe, T. and Graham, K. (2003) Polymeric Nanofibers and Nanofiber Webs: A New Class of Nonwovens. International Nonwovens Journal, 12.
https://doi.org/10.1177/1558925003os-1200113
[34]  Großhaus, C., Bakirci, E., Berthel, M., Hrynevich, A., Kade, J.C., Hochleitner, G., et al. (2020) Melt Electrospinning of Nanofibers from Medical‐Grade Poly(ε‐Caprolactone) with a Modified Nozzle. Small, 16, Article ID: 2003471.
https://doi.org/10.1002/smll.202003471
[35]  Luo, W., Zhang, J., Qiu, X., Chen, L., Fu, J., Hu, P., et al. (2018) Electric-Field-Modified in Situ Precise Deposition of Electrospun Medical Glue Fibers on the Liver for Rapid Hemostasis. Nanoscale Research Letters, 13, Article No. 278.
https://doi.org/10.1186/s11671-018-2698-8
[36]  Agarwal, H., Quinn, L.J., Walter, S.C., Polaske, T.J., Chang, D.H., Palecek, S.P., et al. (2022) Slippery Antifouling Polymer Coatings Fabricated Entirely from Biodegradable and Biocompatible Components. ACS Applied Materials & Interfaces, 14, 17940-17949.
https://doi.org/10.1021/acsami.1c25218
[37]  杨西, 杨玉华. 化学气相沉积技术的研究与应用进展[J]. 甘肃水利水电技术, 2008, 44(3): 211-213.
[38]  余琼卫, 冯钰锜. 液相沉积法(LPD)在分析化学中的应用[J]. 化学进展, 2011, 23(6): 1211-1223.
[39]  Yu, J., Qin, L., Hao, Y., Kuang, S., Bai, X., Chong, Y., et al. (2010) Vertically Aligned Boron Nitride Nanosheets: Chemical Vapor Synthesis, Ultraviolet Light Emission, and Superhydrophobicity. ACS Nano, 4, 414-422.
https://doi.org/10.1021/nn901204c
[40]  Al-Asbahi, B.A., Qaid, S.M.H., Hezam, M., Bedja, I., Ghaithan, H.M. and Aldwayyan, A.S. (2020) Effect of Deposition Method on the Structural and Optical Properties of CH3NH3PbI3 Perovskite Thin Films. Optical Materials, 103, Article 109836.
https://doi.org/10.1016/j.optmat.2020.109836
[41]  Isimjan, T.T., Wang, T. and Rohani, S. (2012) A Novel Method to Prepare Superhydrophobic, UV Resistance and Anti-Corrosion Steel Surface. Chemical Engineering Journal, 210, 182-187.
https://doi.org/10.1016/j.cej.2012.08.090
[42]  Atici, E.G., Kasapgil, E., Anac, I. and Erbil, H.Y. (2016) Methyltrichlorosilane Polysiloxane Filament Growth on Glass Using Low Cost Solvents and Comparison with Gas Phase Reactions. Thin Solid Films, 616, 101-110.
https://doi.org/10.1016/j.tsf.2016.07.041
[43]  Kasapgil, E., Anac, I. and Erbil, H.Y. (2019) Transparent, Fluorine-Free, Heat-Resistant, Water Repellent Coating by Infusing Slippery Silicone Oil on Polysiloxane Nanofilament Layers Prepared by Gas Phase Reaction of N-Propyltrichlorosilane and Methyltrichlorosilane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 223-232.
https://doi.org/10.1016/j.colsurfa.2018.09.064
[44]  Roualdes, S. and Rouessac, V. (2017) 1.10 Plasma Membranes. In: Drioli, E., Giorno L. and Fontananova, E., Eds., Comprehensive Membrane Science and Engineering, Elsevier, 236-269.
https://doi.org/10.1016/b978-0-12-409547-2.12224-3
[45]  Akdoğan, E. and Şirin, H.T. (2021) Plasma Surface Modification Strategies for the Preparation of Antibacterial Biomaterials: A Review of the Recent Literature. Materials Science and Engineering: C, 131, Article 112474.
https://doi.org/10.1016/j.msec.2021.112474
[46]  Liu, C., Bai, J., Wang, Y., Chen, L., Wang, D., Ni, S., et al. (2021) The Effects of Three Cold Plasma Treatments on the Osteogenic Activity and Antibacterial Property of Peek. Dental Materials, 37, 81-93.
https://doi.org/10.1016/j.dental.2020.10.007
[47]  Ojah, N., Deka, J., Haloi, S., Kandimalla, R., Gogoi, D., Medhi, T., et al. (2019) Chitosan Coated Silk Fibroin Surface Modified by Atmospheric Dielectric-Barrier Discharge (DBD) Plasma: A Mechanically Robust Drug Release System. Journal of Biomaterials Science, Polymer Edition, 30, 1142-1160.
https://doi.org/10.1080/09205063.2019.1622844
[48]  Rezaei, F., Shokri, B. and Sharifian, M. (2016) Atmospheric-Pressure DBD Plasma-Assisted Surface Modification of Polymethyl Methacrylate: A Study on Cell Growth/Proliferation and Antibacterial Properties. Applied Surface Science, 360, 641-651.
https://doi.org/10.1016/j.apsusc.2015.11.036

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133