全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生物电化学系统在处理焦化废水中的研究进展
Research Progress of Bioelectrochemical Systems in the Treatment of Coking Wastewater

DOI: 10.12677/aac.2025.151006, PP. 52-60

Keywords: 焦化废水,生物电化学系统,电极材料,强化污染物去除
Coking Wastewater
, Bioelectrochemical System, Electrode Material, Enhanced Pollutant Removal

Full-Text   Cite this paper   Add to My Lib

Abstract:

焦化废水具有高浓度、成分复杂、生物毒性高等特点,采用常规处理方式处理焦化废水具有很大的挑战性。与传统生物法、电化学相比,生物电化学系统(Bioelectrochemical System, BES)不仅具有同时去除焦化废水中碳质和氮质污染物的能力,而且可以通过电强化微生物的协同作用,节省整个处理过程的能量消耗。但是,鲜有综述对生物电化学系统在处理焦化废水中的研究进行系统总结。因此,文章在回顾BES原理、类型、电极材料的基础上,总结了BES在焦化废水处理中的研究进展,并分析了其在去除有机污染物、氨氮等污染物方面的强化效果。通过这些系统的回顾,本综述不仅阐述了电强化微生物促进焦化废水中污染物的作用机理,提出了未来关于BES的研究方向,还展望了BES用于焦化废水处理的前景和挑战,从而促进了BES在焦化废水处理中的实际应用。
Coking wastewater is characterized by high concentrations, complex composition, and high biological toxicity, making its treatment challenging using conventional methods. Compared to traditional biological and electrochemical processes, the Bioelectrochemical System (BES) not only have the capability to simultaneously remove carbon and nitrogen pollutants from coking wastewater but also enhance microbial activity through electrical stimulation, thereby reducing energy consumption in the treatment process. However, there is a lack of systematic reviews summarizing the research on BES in coking wastewater treatment. This paper reviews the principles, types, and electrode materials of BES, summarizes the research progress of BES in coking wastewater treatment, and analyzes its enhanced effects in removing organic pollutants and ammonia nitrogen. Through this systematic review, the mechanisms by which electrostimulation promotes pollutant removal in coking wastewater are elucidated, future research directions for BES are proposed, and the prospects and challenges of using BES for coking wastewater treatment are discussed, thereby facilitating the practical application of BES in this field.

References

[1]  徐振刚. 中国现代煤化工近25年发展回顾·反思·展望[J]. 煤炭科学技术, 2020, 48(8): 1-25.
[2]  刘立麟. 我国现代煤化工发展的影响因素分析[J]. 煤炭经济研究, 2012, 32(3): 34-38.
[3]  Bokun, C., Siyu, Y., Yangyang, W., Miyangzi, S. and Yu, Q. (2020) Intensified Phenols Extraction and Oil Removal for Industrial Semi-Coking Wastewater: A Novel Economic Pretreatment Process Design. Journal of Cleaner Production, 242, Article ID: 118453.
https://doi.org/10.1016/j.jclepro.2019.118453

[4]  Li, Y.L., Wang, Q.B., Chen, H.W., et al. (2024) Multi-Stage Oxic Biofilm System for Pilot-Scale Treatment of Coking Wastewater: Pollutants Removal Performance, Biofilm Properties and Microbial Community. Bioresource Technology, 411, Article ID: 131271.
[5]  李成. 煤化工废水难降解有机物的处理技术进展[J]. 化工安全与环境, 2024, 37(10): 54-56.
[6]  dos Santos, A.J., Kronka, M.S., Fortunato, G.V. and Lanza, M.R.V. (2021) Recent Advances in Electrochemical Water Technologies for the Treatment of Antibiotics: A Short Review. Current Opinion in Electrochemistry, 26, Article ID: 100674.
https://doi.org/10.1016/j.coelec.2020.100674

[7]  Zhu, H., Han, Y., Xu, C., Han, H. and Ma, W. (2018) Overview of the State of the Art of Processes and Technical Bottlenecks for Coal Gasification Wastewater Treatment. Science of the Total Environment, 637, 1108-1126.
https://doi.org/10.1016/j.scitotenv.2018.05.054

[8]  Ting, S., Wang, Z.K., Zhou, K., et al. (2021) Advanced Treatment of Secondary Effluent Organic Matters (EfOM) from an Industrial Park Wastewater Treatment Plant by Fenton Oxidation Combining with Biological Aerated Filter. Science of the Total Environment, 784, Article ID: 147204.
[9]  Liu, F.Y., Zhou, R., Zhang, C.P., et al. (2024) Critical Review on the Pulsed Electrochemical Technologies for Wastewater Treatment: Fundamentals, Current Trends, and Future Studies. Chemical Engineering Journal, 479, Article ID: 147588.
[10]  Deng, Y., Chen, N., Hu, W., Wang, H., Kuang, P., Chen, F., et al. (2021) Treatment of Old Landfill Leachate by Persulfate Enhanced Electro-Coagulation System: Improving Organic Matters Removal and Precipitates Settling Performance. Chemical Engineering Journal, 424, Article ID: 130262.
https://doi.org/10.1016/j.cej.2021.130262

[11]  Feng, Y., Guo, M., Jia, X., Liu, N., Li, X., Li, X., et al. (2020) Combined Effects of Electrical Current and Nonsteroidal Antiinflammatory Drugs (Nsaids) on Microbial Community in a Three-Dimensional Electrode Biological Aerated Filter (3DE-BAF). Bioresource Technology, 309, Article ID: 123346.
https://doi.org/10.1016/j.biortech.2020.123346

[12]  Choudhary, M., Verma, P. and Ray, S. (2024) A Comprehensive Review on Bio-Electrochemical Systems for Wastewater Treatment: Process, Electricity Generation and Future Aspect. Environment, Development and Sustainability.
https://doi.org/10.1007/s10668-024-05866-x

[13]  Liu, S.T., Feng, X.J., Gu, F., et al. (2017) Sequential Reduction/Oxidation of Azo Dyes in a Three-Dimensional Biofilm Electrode Reactor. Chemosphere (Oxford), 186, 287-294.
[14]  Song, H., Zhang, S., Yang, X., Chen, T. and Zhang, Y. (2017) Coupled Effects of Electrical Stimulation and Antibiotics on Microbial Community in Three-Dimensional Biofilm-Electrode Reactors. Water, Air, & Soil Pollution, 228, Article No. 83.
https://doi.org/10.1007/s11270-017-3267-y

[15]  李中坚. 基于微生物电化学系统的废水处理技术研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2012.
[16]  Hernandez, C.A. and Osma, J.F. (2020) Microbial Electrochemical Systems: Deriving Future Trends from Historical Perspectives and Characterization Strategies. Frontiers in Environmental Science, 8, Article No. 44.
https://doi.org/10.3389/fenvs.2020.00044

[17]  谢莱, 杨敏, 杨恩喆, 等. 生物电化学耦合厌氧氨氧化强化脱氮及其微生物群落特征[J]. 生物工程学报, 2023, 39(7): 2719-2729.
[18]  Logan, B.E., Rossi, R., Ragab, A. and Saikaly, P.E. (2019) Electroactive Microorganisms in Bioelectrochemical Systems. Nature Reviews Microbiology, 17, 307-319.
https://doi.org/10.1038/s41579-019-0173-x

[19]  Wang, S., Yang, X., Meng, H., Zhang, Y., Li, X. and Xu, J. (2019) Enhanced Denitrification by Nano a-Fe2O3 Induced Self-Assembled Hybrid Biofilm on Particle Electrodes of Three-Dimensional Biofilm Electrode Reactors. Environment International, 125, 142-151.
https://doi.org/10.1016/j.envint.2019.01.060

[20]  Cheng, Z. and Hu, X. (2017) Performance and Degradation Mechanism of a Sequencing Batch Biofilm Reactor Combined with an Electrochemical Process for the Removal of Low Concentrations of Cefuroxime. Chemical Engineering Journal, 320, 93-103.
https://doi.org/10.1016/j.cej.2017.03.037

[21]  Guo, M., Feng, Y., Li, X., Yan, G., Wang, X., Li, X., et al. (2021) Enhanced Degradation of Pharmaceuticals and Personal Care Products (PPCPS) by Three-Dimensional Electrocatalysis Coupled Biological Aerated Filter. Journal of Environmental Chemical Engineering, 9, Article ID: 106035.
https://doi.org/10.1016/j.jece.2021.106035

[22]  Zhou, L., Wu, Y., Zhang, S., Li, Y., Gao, Y., Zhang, W., et al. (2022) Recent Development in Microbial Electrochemical Technologies: Biofilm Formation, Regulation, and Application in Water Pollution Prevention and Control. Journal of Water Process Engineering, 49, Article ID: 103135.
https://doi.org/10.1016/j.jwpe.2022.103135

[23]  Rabaey, K. and Verstraete, W. (2005) Microbial Fuel Cells: Novel Biotechnology for Energy Generation. Trends in Biotechnology, 23, 291-298.
https://doi.org/10.1016/j.tibtech.2005.04.008

[24]  Wu, Z.-Y., Xu, J., Wu, L., et al. (2022) Three-Dimensional Biofilm Electrode Reactors (3D-BERs) for Wastewater Treatment. Bioresource Technology, 344, Article ID: 126274.
[25]  Rojas, M.I., Esplandiu, M.J., Avalle, L.B., Leiva, E.P.M. and Macagno, V.A. (1998) The Oxygen and Chlorine Evolution Reactions at Titanium Oxide Electrodes Modified with Platinum. Electrochimica Acta, 43, 1785-1794.
https://doi.org/10.1016/s0013-4686(97)10002-0

[26]  Cui, M.-H., Cui, D., Gao, L., et al. (2016) Azo Dye Decolorization in an Up-Flow Bioelectrochemical Reactor with Domestic Wastewater as a Cost-Effective Yet Highly Efficient Electron Donor Source. Water Research (Oxford), 105, 520-526.
[27]  Feng, L., Li, X., Gan, L. and Xu, J. (2018) Synergistic Effects of Electricity and Biofilm on Rhodamine B (RhB) Degradation in Three-Dimensional Biofilm Electrode Reactors (3D-BERs). Electrochimica Acta, 290, 165-175.
https://doi.org/10.1016/j.electacta.2018.09.068

[28]  Wang, H., Lyu, W., Hu, X., Chen, L., He, Q., Zhang, W., et al. (2019) Effects of Current Intensities on the Performances and Microbial Communities in a Combined Bio-Electrochemical and Sulfur Autotrophic Denitrification (CBSAD) System. Science of the Total Environment, 694, Article ID: 133775.
https://doi.org/10.1016/j.scitotenv.2019.133775

[29]  Tang, Q., Sheng, Y., Li, C., Wang, W. and Liu, X. (2020) Simultaneous Removal of Nitrate and Sulfate Using an Up-Flow Three-Dimensional Biofilm Electrode Reactor: Performance and Microbial Response. Bioresource Technology, 318, Article ID: 124096.
https://doi.org/10.1016/j.biortech.2020.124096

[30]  Mier, A.A., Olvera-Vargas, H., Mejía-López, M., Longoria, A., Verea, L., Sebastian, P.J., et al. (2021) A Review of Recent Advances in Electrode Materials for Emerging Bioelectrochemical Systems: From Biofilm-Bearing Anodes to Specialized Cathodes. Chemosphere, 283, Article ID: 131138.
https://doi.org/10.1016/j.chemosphere.2021.131138

[31]  Mubarak, N.-M., et al. (2023) Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems. Elsevier.
[32]  Dong, Y., Yan, C., Zhao, H. and Lei, Y. (2022) Recent Advances in 2D Heterostructures as Advanced Electrode Materials for Potassium‐Ion Batteries. Small Structures, 3, Article ID: 2100221.
https://doi.org/10.1002/sstr.202100221

[33]  Wu, D., Yi, X., Tang, R., Feng, C. and Wei, C. (2018) Single Microbial Fuel Cell Reactor for Coking Wastewater Treatment: Simultaneous Carbon and Nitrogen Removal with Zero Alkaline Consumption. Science of the Total Environment, 621, 497-506.
https://doi.org/10.1016/j.scitotenv.2017.11.262

[34]  Jiang, B., Du, C., Shi, S., Tan, L., Li, M., Liu, J., et al. (2017) Enhanced Treatment Performance of Coking Wastewater and Reduced Membrane Fouling Using a Novel EMBR. Bioresource Technology, 229, 39-45.
https://doi.org/10.1016/j.biortech.2016.12.116

[35]  Dong, J., Chen, Z., Han, F., Hu, D., Ge, H., Jiang, B., et al. (2024) Performance of a Novel Up-Flow Electrocatalytic Hydrolysis Acidification Reactor (UEHAR) Coupled with Anoxic/Oxic System for Treating Coking Wastewater. Water Research, 257, Article ID: 121670.
https://doi.org/10.1016/j.watres.2024.121670

[36]  Sheng, B., Wang, D., Liu, X., Yang, G., Zeng, W., Yang, Y., et al. (2020) Taxonomic and Functional Variations in the Microbial Community during the Upgrade Process of a Full-Scale Landfill Leachate Treatment Plant—From Conventional to Partial Nitrification-Denitrification. Frontiers of Environmental Science & Engineering, 14, Article No. 93.
https://doi.org/10.1007/s11783-020-1272-7

[37]  Wu, Z.Y., Zhu, W.P., Liu, Y., et al. (2020) An Integrated Three-Dimensional Electrochemical System for Efficient Treatment of Coking Wastewater Rich in Ammonia Nitrogen. Chemosphere (Oxford), 246, Article ID: 125703.
[38]  Gul, M.-M. and Khuram-Shahzad, A. (2019) Bioelectrochemical Systems: Sustainable Bio-Energy Powerhouses. Biosensors and Bioelectronics, 142, Article ID: 111576.
[39]  Min, B., Kim, J., Oh, S., Regan, J.M. and Logan, B.E. (2005) Electricity Generation from Swine Wastewater Using Microbial Fuel Cells. Water Research, 39, 4961-4968.
https://doi.org/10.1016/j.watres.2005.09.039

[40]  Zhang, Q. and Liu, L. (2021) Cathodes of Membrane and Packed Manganese Dioxide/Titanium Dioxide/Graphitic Carbon Nitride/Granular Activated Carbon Promoted Treatment of Coking Wastewater in Microbial Fuel Cell. Bioresource Technology, 321, Article ID: 124442.
https://doi.org/10.1016/j.biortech.2020.124442

[41]  Liu, Y., Zhang, Z., Song, Y., Peng, F. and Feng, Y. (2024) Long-Term Evaluating the Strengthening Effects of Iron-Carbon Mediator for Coking Wastewater Treatment in EGSB Reactor. Journal of Hazardous Materials, 474, Article ID: 134701.
https://doi.org/10.1016/j.jhazmat.2024.134701

[42]  Thengumthottathil, V., Ponnusamy, K. and Naina Mohamed, S. (2024) Bioelectrochemical Systems: Exploring Microbial Communities, Interactions, and Electron Transfer. Biochemical Engineering Journal, 211, Article ID: 109442.
https://doi.org/10.1016/j.bej.2024.109442

[43]  Bajracharya, S., Sharma, M., Mohanakrishna, G., Dominguez Benneton, X., Strik, D.P.B.T.B., Sarma, P.M., et al. (2016) An Overview on Emerging Bioelectrochemical Systems (BESS): Technology for Sustainable Electricity, Waste Remediation, Resource Recovery, Chemical Production and Beyond. Renewable Energy, 98, 153-170.
https://doi.org/10.1016/j.renene.2016.03.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133