全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双金属衍生材料电催化还原二氧化碳的研究进展
Research Progress on Electrocatalytic Reduction of Carbon Dioxide by Bimetallic Derived Materials

DOI: 10.12677/aac.2025.151005, PP. 43-51

Keywords: 电催化,双金属衍生材料,二氧化碳还原
Electrocatalysis
, Bimetallic Derived Material, Carbon Dioxide Reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

研发高效的CO2电还原催化剂对减少碳排放、实现碳中和具有重要意义。单一金属催化剂如单原子催化剂因其良好的催化性能在CO2电还原领域得到广泛研究。然而,单一金属催化剂存在活性位点单一、反应动力学慢、产物选择性低和稳定性不足等缺点。双金属催化剂因其独特的结构和优异的性能而受到极大关注。通过引入另一种金属,可以改变催化剂的电子结构,促进新的活性位点的形成,从而优化中间体与活性位点之间的相互作用。文章从衍生材料的制备策略、双金属材料的优势剂在电催化二氧化碳领域的应用等角度具体阐述了双金属衍生材料在电催化碳还原领域的研究进展。
Developing efficient CO2 electroreduction catalysts is of great significance for reducing carbon emissions and achieving carbon neutrality. Single metal catalysts such as single atom catalysts have been widely studied in the field of CO2 electroreduction due to their excellent catalytic performance. However, single metal catalysts have disadvantages such as single active sites, slow reaction kinetics, low product selectivity, and insufficient stability. Bimetallic catalysts have attracted great attention due to their unique structure and excellent performance. By introducing another metal, the electronic structure of the catalyst can be altered, promoting the formation of new active sites and optimizing the interaction between intermediates and active sites. This article presents the research progress of bimetallic-derived materials in the field of electrocatalytic carbon reduction, focusing on the preparation strategies of derived materials and the application of dominant agents of bimetallic materials in the field of electrocatalytic carbon dioxide reduction.

References

[1]  Zhang, C., Gu, Y., Jiang, Q., Sheng, Z., Feng, R., Wang, S., et al. (2024) Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products. Nano-Micro Letters, 17, Article No. 66.
https://doi.org/10.1007/s40820-024-01568-1
[2]  Xu, Q., Jiang, J., Sheng, X., Jing, Q., Wang, X., Duan, L., et al. (2023) Understanding the Synergistic Effect of Piezoelectric Polarization and the Extra Electrons Contributed by Oxygen Vacancies on an Efficient Piezo-Photocatalysis CO2 Reduction. Inorganic Chemistry Frontiers, 10, 2939-2950.
https://doi.org/10.1039/d3qi00405h
[3]  Shi, H., Fu, M., Yuan, S., Lu, Y., Yang, Z., Yue, C., et al. (2024) Engineered Escherichia coli Whole Cell-Mediated Electro-Biocatalysis for Carbon Dioxide to Formic Acid Conversion. ACS Sustainable Chemistry & Engineering, 12, 5544-5554.
https://doi.org/10.1021/acssuschemeng.3c08129
[4]  Tran, D.S., Vu, N., Nemamcha, H., Boisvert, C., Legrand, U., Fink, A.G., et al. (2025) Design of Electrocatalysts and Electrodes for CO2 Electroreduction to Formic Acid and Formate. Coordination Chemistry Reviews, 524, Article 216322.
https://doi.org/10.1016/j.ccr.2024.216322
[5]  Xiong, B., Yang, Y., Liu, J., Hua, Z. and Yang, Y. (2022) Electrocatalytic Reduction of CO2 to C1 Products over Bimetal Catalysts: A DFT Screening Study. Fuel Processing Technology, 233, Article 107315.
https://doi.org/10.1016/j.fuproc.2022.107315
[6]  Xu, Z., Tan, X., Chen, C., Wang, X., Sui, R., Zhuang, Z., et al. (2024) Recent Advances in Microenvironment Regulation for Electrocatalysis. National Science Review, 11, nwae315.
https://doi.org/10.1093/nsr/nwae315
[7]  Tang, T., Bai, X., Wang, Z. and Guan, J. (2024) Structural Engineering of Atomic Catalysts for Electrocatalysis. Chemical Science, 15, 5082-5112.
https://doi.org/10.1039/d4sc00569d
[8]  Lü, F., Qi, G., Liu, X., Zhang, C., Guo, R., Peng, X., et al. (2019) Selective Electrolysis of CO2 to CO on Ultrathin In2Se3 Nanosheets. Electrochemistry Communications, 103, 127-132.
https://doi.org/10.1016/j.elecom.2019.05.020
[9]  Zhang, C., Follana-Berná, J., Dragoe, D., Halime, Z., Gotico, P., Sastre-Santos, Á., et al. (2024) Cobalt Tetracationic 3,4-pyridinoporphyrazine for Direct CO2 to Methanol Conversion Escaping the CO Intermediate Pathway. Angewandte Chemie International Edition, 63, e202411967.
https://doi.org/10.1002/anie.202411967
[10]  Liu, Y., Deng, C., Liu, F., Dai, X., Yang, X., Chen, Y., et al. (2024) Coupling Electron Donors with Proton Repulsion via Pt-N3-S Sites to Boost CO2 Reduction in CO2/H2 Fuel Cell. Nano Energy, 126, Article 109667.
https://doi.org/10.1016/j.nanoen.2024.109667
[11]  Zeng, L., Shi, J., Chen, H. and Lin, C. (2021) Ag Nanowires/C as a Selective and Efficient Catalyst for CO2 Electroreduction. Energies, 14, Article 2840.
https://doi.org/10.3390/en14102840
[12]  Fu, J., Zhu, W., Chen, Y., Yin, Z., Li, Y., Liu, J., et al. (2019) Bipyridine-Assisted Assembly of Au Nanoparticles on Cu Nanowires to Enhance the Electrochemical Reduction of CO2. Angewandte Chemie International Edition, 58, 14100-14103.
https://doi.org/10.1002/anie.201905318
[13]  Wang, G., Li, X., Yang, X., Liu, L., Cai, Y., Wu, Y., et al. (2022) Metal-Based Aerogels Catalysts for Electrocatalytic CO2 Reduction. ChemistryA European Journal, 28, e202201834.
https://doi.org/10.1002/chem.202201834
[14]  He, J., Dettelbach, K.E., Salvatore, D.A., Li, T. and Berlinguette, C.P. (2017) High-Throughput Synthesis of Mixed-Metal Electrocatalysts for CO2 Reduction. Angewandte Chemie International Edition, 56, 6068-6072.
https://doi.org/10.1002/anie.201612038
[15]  Cao, X., Chen, C., Min, Y., Yuan, H., Chen, S. and Xu, L. (2021) Prediction of Bimetal Embedded in Two-Dimensional Materials for CO2 Reduction Electrocatalysis with a New Integrated Descriptor. Physical Chemistry Chemical Physics, 23, 26241-26249.
https://doi.org/10.1039/d1cp03805b
[16]  Shao, Q., Wang, P. and Huang, X. (2018) Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Advanced Functional Materials, 29, Article 1806419.
https://doi.org/10.1002/adfm.201806419
[17]  He, C., Wang, S., Jiang, X., Hu, Q., Yang, H. and He, C. (2022) Bimetallic Cobalt-Copper Nanoparticle-Decorated Hollow Carbon Nanofibers for Efficient CO2 Electroreduction. Frontiers in Chemistry, 10, Article 904241.
https://doi.org/10.3389/fchem.2022.904241
[18]  Xiong, W., Yang, J., Shuai, L., Hou, Y., Qiu, M., Li, X., et al. (2019) CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction. Chem Electro Chem, 6, 5951-5957.
https://doi.org/10.1002/celc.201901381
[19]  Feng, J., Wang, X. and Pan, H. (2024) In-Situ Reconstruction of Catalyst in Electrocatalysis. Advanced Materials, 36, Article 2411688.
https://doi.org/10.1002/adma.202411688
[20]  Shen, Y.X., Liu, T.F., Li, R.T., Lv, H.F., Ta, N., Zhang, X.M., et al. (2023) In Situ Electrochemical Reconstruction of Sr2Fe1.45Ir0.05Mo0.5O6-Δ Perovskite Cathode for CO2 Electrolysis in Solid Oxide Electrolysis Cells. National Science Review, 10, nwad078.
https://doi.org/10.1093/nsr/nwad078
[21]  Liu, C., Zhang, X., Huang, J., Guan, M., Xu, M. and Gu, Z. (2022) In Situ Reconstruction of Cu-N Coordinated MOFs to Generate Dispersive Cu/Cu2O Nanoclusters for Selective Electroreduction of CO2 to C2H4. ACS Catalysis, 12, 15230-15240.
https://doi.org/10.1021/acscatal.2c04275
[22]  Guo, Z., Yu, Y., Li, C., Campos dos Santos, E., Wang, T., Li, H., et al. (2024) Deciphering Structure-Activity Relationship towards CO2 Electroreduction over SnO2 by a Standard Research Paradigm. Angewandte Chemie International Edition, 63, e202319913.
https://doi.org/10.1002/anie.202319913
[23]  Singh, C., Mukhopadhyay, S. and Hod, I. (2021) Metal-Organic Framework Derived Nanomaterials for Electrocatalysis: Recent Developments for CO2 and N2 Reduction. Nano Convergence, 8, Article No, 1.
https://doi.org/10.1186/s40580-020-00251-6
[24]  Mukherjee, S., Hou, S., Watzele, S.A., Garlyyev, B., Li, W., Bandarenka, A.S., et al. (2022) Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOF-Derived Electrocatalysts. Chem Electro Chem, 9, e202101476.
https://doi.org/10.1002/celc.202101476
[25]  Li, J., Luo, H., Li, B., Ma, J. and Cheng, P. (2023) Application of MOF-Derived Materials as Electrocatalysts for CO2 Conversion. Materials Chemistry Frontiers, 7, 6107-6129.
https://doi.org/10.1039/d3qm00835e
[26]  Xiao, J., Zhang, T. and Wang, Q. (2022) Metal-Organic Framework Derived Single-Atom Catalysts for CO2 Conversion to Methanol. Current Opinion in Green and Sustainable Chemistry, 37, Article 100660.
https://doi.org/10.1016/j.cogsc.2022.100660
[27]  Huang, J., Zhang, X., Huang, J., Zheng, D., Xu, M. and Gu, Z. (2023) MOF-Based Materials for Electrochemical Reduction of Carbon Dioxide. Coordination Chemistry Reviews, 494, Article 215333.
https://doi.org/10.1016/j.ccr.2023.215333
[28]  Kharissova, O.V., Kharisov, B.I. and González, L.T. (2020) Recent Trends on Density Functional Theory-Assisted Calculations of Structures and Properties of Metal-Organic Frameworks and Metal-Organic Frameworks-Derived Nanocarbons. Journal of Materials Research, 35, 1424-1438.
https://doi.org/10.1557/jmr.2020.109
[29]  van den Berg, D., Izelaar, B., Fu, S. and Kortlever, R. (2024) The Effect of Surface Conditions on the Electrochemical CO2 Reduction Performance of Bimetallic AuPd Electrocatalysts. Catalysis Science & Technology, 14, 555-561.
https://doi.org/10.1039/d3cy01411h
[30]  Wang, Y., Niu, C. and Zhu, Y. (2019) Copper-Silver Bimetallic Nanowire Arrays for Electrochemical Reduction of Carbon Dioxide. Nanomaterials, 9, Article 173.
https://doi.org/10.3390/nano9020173
[31]  Śliwa, M., Zhang, H., Gao, J., Stephens, B.O., Patera, A.J., Raciti, D., et al. (2024) Selective CO2 Reduction Electrocatalysis Using AgCu Nanoalloys Prepared by a “Host-Guest” Method. Nano Letters, 24, 13911-13918.
https://doi.org/10.1021/acs.nanolett.4c02638
[32]  Rasul, S., Anjum, D.H., Jedidi, A., Minenkov, Y., Cavallo, L. and Takanabe, K. (2014) A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to CO. Angewandte Chemie International Edition, 54, 2146-2150.
https://doi.org/10.1002/anie.201410233
[33]  Su, X., Sun, Y., Jin, L., Zhang, L., Yang, Y., Kerns, P., et al. (2020) Hierarchically Porous Cu/Zn Bimetallic Catalysts for Highly Selective CO2 Electroreduction to Liquid C2 Products. Applied Catalysis B: Environmental, 269, Article 118800.
https://doi.org/10.1016/j.apcatb.2020.118800
[34]  Mo, C., Yang, C., Hu, Y. and Peng, J. (2024) Bimetallic Bi-In Nanoparticles for Efficient Production of Formate via Electrocatalytic Conversion of CO2. Journal of Solid State Electrochemistry, 28, 4235-4246.
https://doi.org/10.1007/s10008-024-06042-x
[35]  Merino-Garcia, I., Albo, J., Krzywda, P., Mul, G. and Irabien, A. (2020) Bimetallic Cu-Based Hollow Fibre Electrodes for CO2 Electroreduction. Catalysis Today, 346, 34-39.
https://doi.org/10.1016/j.cattod.2019.03.025
[36]  Luo, M., Fu, X., Geng, S., Li, Z. and Li, M. (2023) Efficient Electrochemical CO2 Reduction via CuAg Doped CeO2. Fuel, 347, Article 128470.
https://doi.org/10.1016/j.fuel.2023.128470
[37]  Li, Y., Zhou, L., Han, G., Cui, W., Li, W. and Hu, T. (2024) ZIF-Derived Catalyst with Inverse ZnO/Co Structure for Efficient CO2 Methanation. International Journal of Hydrogen Energy, 51, 452-461.
https://doi.org/10.1016/j.ijhydene.2023.10.094
[38]  Wang, P., Li, T., Wu, Q., Du, R., Zhang, Q., Huang, W., et al. (2022) Molecular Assembled Electrocatalyst for Highly Selective CO2 Fixation to C2+ Products. ACS Nano, 16, 17021-17032.
https://doi.org/10.1021/acsnano.2c07138
[39]  Xue, Y., Li, C., Zhou, X., Kuang, Z., Zhao, W., Zhang, Q., et al. (2022) MOF-Derived Cu/Bi Bi-Metallic Catalyst to Enhance Selectivity toward Formate for CO2 Electroreduction. Chem Electro Chem, 9, e202101648.
https://doi.org/10.1002/celc.202101648
[40]  Yang, Z., Wang, H., Bi, X., Tan, X., Zhao, Y., Wang, W., et al. (2023) Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows. Energy & Environmental Materials, 7, e12508.
https://doi.org/10.1002/eem2.12508
[41]  Zhao, R., Zhu, Z., Ouyang, T. and Liu, Z. (2023) Selective CO2-to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angewandte Chemie International Edition, 63, e202313597.
https://doi.org/10.1002/anie.202313597
[42]  Yang, X., Wang, Q., Chen, F., Zang, H., Liu, C., Yu, N., et al. (2023) In-Situ Electrochemical Restructuring of Cu2BiSx Solid Solution into Bi/CuXSy Heterointerfaces Enabling Stabilization Intermediates for High-Performance CO2 Electroreduction to Formate. Nano Research, 16, 7974-7981.
https://doi.org/10.1007/s12274-022-5337-8
[43]  Xue, Y., Guo, Y., Cui, H. and Zhou, Z. (2021) Catalyst Design for Electrochemical Reduction of CO2 to Multicarbon Products. Small Methods, 5, Article 2100736.
https://doi.org/10.1002/smtd.202100736
[44]  Li, J., Chen, W., Lin, R., Huang, M., Wang, M., Chai, M., et al. (2021) Thermally Evaporated Ag-Au Bimetallic Catalysts for Efficient Electrochemical CO2 Reduction. Particle & Particle Systems Characterization, 38, Article 2100148.
https://doi.org/10.1002/ppsc.202100148
[45]  Li, W., Zhang, Z., Liu, W., Gan, Q., Liu, M., Huo, S., et al. (2022) ZnSn Nanocatalyst: Ultra-High Formate Selectivity from CO2 Electrochemical Reduction and the Structure Evolution Effect. Journal of Colloid and Interface Science, 608, 2791-2800.
https://doi.org/10.1016/j.jcis.2021.11.002
[46]  Wang, W., Wang, Z., Yang, R., Duan, J., Liu, Y., Nie, A., et al. (2021) In Situ Phase Separation into Coupled Interfaces for Promoting CO2 Electroreduction to Formate over a Wide Potential Window. Angewandte Chemie International Edition, 60, 22940-22947.
https://doi.org/10.1002/anie.202110000
[47]  Sun, B., Cheng, H., Shi, C., Guan, J., Jiang, Z., Ma, S., et al. (2025) Metal-Organic Framework-Derived Silver/Copper-Oxide Catalyst for Boosting the Productivity of Carbon Dioxide Electrocatalysis to Ethylene. Journal of Colloid and Interface Science, 679, 615-623.
https://doi.org/10.1016/j.jcis.2024.10.014
[48]  Shen, H., Zhao, Y., Zhang, L., He, Y., Yang, S., Wang, T., et al. (2022) In-Situ Constructuring of Copper-Doped Bismuth Catalyst for Highly Efficient CO2 Electrolysis to Formate in Ampere-Level. Advanced Energy Materials, 13, Article 2202818.
https://doi.org/10.1002/aenm.202202818
[49]  Zou, X., Li, A., Ma, C., Gao, Z., Zhou, B., Zhu, L., et al. (2023) Nitrogen-Doped Carbon Confined Cu-Ag Bimetals for Efficient Electroreduction of CO2 to High-Order Products. Chemical Engineering Journal, 468, Article 143606.
https://doi.org/10.1016/j.cej.2023.143606
[50]  He, A., Yang, Y., Zhang, Q., Yang, M., Zou, Q., Du, J., et al. (2022) The Enhanced Local CO Concentration for Efficient CO2 Electrolysis towards C2 Products on Tandem Active Sites. Chemical Engineering Journal, 450, Article 138009.
https://doi.org/10.1016/j.cej.2022.138009
[51]  Xiong, B., Liu, J., Yang, Y., Yang, Y. and Hua, Z. (2022) Effect Mechanism of NO on Electrocatalytic Reduction of CO2 to CO over Pd@Cu Bimetal Catalysts. Fuel, 323, Article 124339.
https://doi.org/10.1016/j.fuel.2022.124339
[52]  Xiang, H., Rasul, S., Hou, B., Portoles, J., Cumpson, P. and Yu, E.H. (2019) Copper-Indium Binary Catalyst on a Gas Diffusion Electrode for High-Performance CO2 Electrochemical Reduction with Record CO Production Efficiency. ACS Applied Materials & Interfaces, 12, 601-608.
https://doi.org/10.1021/acsami.9b16862
[53]  Liu, B., Xie, Y., Wang, X., Gao, C., Chen, Z., Wu, J., et al. (2022) Copper-Triggered Delocalization of Bismuth P-Orbital Favours High-Throughput CO2 Electroreduction. Applied Catalysis B: Environmental, 301, Article 120781.
https://doi.org/10.1016/j.apcatb.2021.120781
[54]  Zhang, M., Zhang, Z., Zhao, Z., Huang, H., Anjum, D.H., Wang, D., et al. (2021) Tunable Selectivity for Electrochemical CO2 Reduction by Bimetallic Cu-Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catalysis, 11, 11103-11108.
https://doi.org/10.1021/acscatal.1c02556

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133