全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mechanisms of Targeted Drug Delivery for Liver Cancer: Active, Passive, and Subcellular Strategies

DOI: 10.4236/jbm.2025.132028, PP. 369-384

Keywords: Targeted Drug Delivery, Hepatocellular Carcinoma (HCC), Active Targeting, Subcellular Targeting, Nanomedicine

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article provides a comprehensive review of various approaches to targeted drug delivery for liver cancer, an area of significant need due to the limited effectiveness of current treatments. The article begins by highlighting the role of the liver in metabolism and discusses the high mortality associated with hepatocellular carcinoma (HCC). The shortcomings of traditional chemotherapy, such as multidrug resistance and off-target effects, necessitate the exploration of novel therapeutic strategies, with a focus on targeted approaches. The review details both passive and active targeting strategies. Passive targeting leverages the enhanced permeability and retention (EPR) effect and unique features of the tumor microenvironment, while active targeting employs specific ligands, such as peptides, antibodies, and proteins, to bind to overexpressed receptors on liver and tumor cells. The article further details many examples of active targeting using the asialoglycoprotein receptor (ASGPR), glycyrrhetinic acid (GA), transferrin receptor (TfR), and folate receptor (FR) on hepatocytes and tumor cells, demonstrating that there has been significant research effort put into this field. The importance of non-parenchymal cells in the liver is also discussed, and the article examines methods of targeting Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells for therapeutic benefit. The review goes on to cover the emerging field of subcellular targeting, including specific strategies to target the nucleus, mitochondria, and the endoplasmic reticulum/Golgi apparatus, noting that although there has been some progress, further research is needed in this area. The text finishes with a summary which acknowledges that while targeted therapies, including enzyme-activated prodrugs, such as Pradefovir, and other novel methods for drug delivery have shown significant promise, challenges remain in translating these therapies into clinical use due to limitations in understanding the sequential transport and the mechanisms of action. Ultimately, the article emphasizes the need for in-depth research to fully realize the potential of precision cancer therapies for liver cancer.

References

[1]  Trefts, E., Gannon, M. and Wasserman, D.H. (2017) The Liver. Current Biology, 27, PR1147-R1151.
https://doi.org/10.1016/j.cub.2017.09.019
[2]  Ali, A.L., Nailwal, N.P. and Doshi, G.M. (2022) Emerging Role of Interleukins for the Assessment and Treatment of Liver Diseases. Endocrine, Metabolic & Immune Disorders—Drug Targets, 22, 371-382.
https://doi.org/10.2174/1871530321666211124102837
[3]  Sankar, K., Gong, J., Osipov, A., Miles, S.A., Kosari, K., Nissen, N.N., Hendifar A.E., Koltsova E.K. and Yang J.D. (2024) Recent Advances in the Management of Hepatocellular Carcinoma. Clinical and Molecular Hepatology, 30, 1-15.
https://doi.org/10.3350/cmh.2023.0125
[4]  Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362.
https://doi.org/10.1016/S0140-6736(22)01200-4
[5]  Wang, W. and Wei, C. (2020) Advances in the Early Diagnosis of Hepatocellular Carcinoma. Genes & Diseases, 7, 308-319.
https://doi.org/10.1016/j.gendis.2020.01.014
[6]  Ruman, U., Fakurazi, S., Masarudin, M.J. and Hussein, M.Z. (2020) Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. International Journal of Nanomedicine, 15, 1437-1456.
https://doi.org/10.2147/IJN.S236927
[7]  Dang, Y. and Guan, J. (2020) Nanoparticle-Based Drug Delivery Systems for Cancer Therapy. Smart Materials in Medicine, 1, 10-19.
https://doi.org/10.1016/j.smaim.2020.04.001
[8]  Gavas, S., Quazi, S. and Karpiński, T.M. (2021) Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters, 16, Article No. 173.
https://doi.org/10.1186/s11671-021-03628-6
[9]  Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M. and Jadidi-Niaragh, F. (2017) Nanoparticles and Targeted Drug Delivery in Cancer Therapy. Immunology Letters, 190, 64-83.
https://doi.org/10.1016/j.imlet.2017.07.015
[10]  Li, M., Zhang, W., Wang, B., Gao, Y., Song, Z. and Zheng, Q.C. (2016) Ligand-Based Targeted Therapy: A Novel Strategy for Hepatocellular Carcinoma. International Journal of Nanomedicine, 11, 5645-5669.
https://doi.org/10.2147/IJN.S115727
[11]  Zhang, C., Huang, S., Ding, K., Wu, H., Li, M., Li, T., Shen, Z., Tai, S. and Li, W. (2024) Tumor-Targeted CO Nanodelivery System Design and Therapy for Hepatocellular Carcinoma. Molecular Pharmaceutics, 21, 5015-5027.
https://doi.org/10.1021/acs.molpharmaceut.4c00437
[12]  Scharner, J., Qi, S., Rigo, F., Bennett, C.F. and Krainer, A.R. (2019) Delivery of GalNAc-Conjugated Splice-Switching ASOs to Non-Hepatic Cells through Ectopic Expression of Asialoglycoprotein Receptor. Molecular Therapy. Nucleic Acids, 16, 313-325.
https://doi.org/10.1016/j.omtn.2019.02.024
[13]  Negrete, M., Romero-Ben, E., Gutiérrez-Valencia, A., Rosales-Barrios, C., Alés, E., Mena-Barragán, T., Flores, J.A., Castillejos, M.C., de la Cruz-Ojeda, P., Navarro-Villarán, E., Cepeda-Franco, C., Khiar, N. and Muntané, J. (2021) PDA-Based Glyconanomicelles for Hepatocellular Carcinoma Cells Active Targeting Via Mannose and Asialoglycoprotein Receptors. ACS Applied Bio Materials, 4, 4789-4799.
https://doi.org/10.1021/acsabm.0c01679
[14]  Li, T., Yu, P., Chen, Y., Sun, B., Dong, P., Zhu, T. and Meng, X. (2021) N-Acetylgalactosamine-Decorated Nanoliposomes for Targeted Delivery of Paclitaxel to Hepatocellular Carcinoma. European Journal of Medicinal Chemistry, 222, 113605.
https://doi.org/10.1016/j.ejmech.2021.113605
[15]  Speciale, A., Muscarà, C., Molonia, M.S., Cristani, M., Cimino, F. and Saija, A. (2022) Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules, 27, Article 1775.
https://doi.org/10.3390/molecules27061775
[16]  Wu, F., Li, X., Jiang, B., Yan, J., Zhang, Z., Qin, J., Yu, W. and Gao, Z. (2018) Glycyrrhetinic Acid Functionalized Nanoparticles for Drug Delivery to Liver Cancer. Journal of Biomedical Nanotechnology, 14, 1837-1852.
https://doi.org/10.1166/jbn.2018.2638
[17]  Pan, X.W., Huang, J.S., Liu, S.R., Shao, Y.D., Xi, J.J., He, R.Y., Shi, T.T., Zhuang, R.X. and Bao, J.F. (2023) Evaluation of the Liver Targeting and Anti-Liver Cancer Activity of Artesunate-Loaded and Glycyrrhetinic Acid-Coated Nanoparticles. Experimental and Therapeutic Medicine, 26, Article No. 516.
https://doi.org/10.3892/etm.2023.12215
[18]  Sang, L., Li, J., Zhang, F., Jia, J., Zhang, J., Ding, P., Sun, T. and Wang, D. (2022) Glycyrrhetinic Acid Modified Chlorambucil Prodrug for Hepatocellular Carcinoma Treatment Based on DNA Replication and Tumor Microenvironment. Colloids and Surfaces B: Biointerfaces, 220, Article 112864.
https://doi.org/10.1016/j.colsurfb.2022.112864
[19]  Qiu, M., Wang, J., Bai, J., Li, X., Tian, C., Liu, Z., Zheng, C., Clark, A.R., Cheng, X., Liao, X., Wu, S., Lee R.J. and Zhou, X. (2023) Dual-Ligand-Functionalized Liposomes Based on Glycyrrhetinic Acid and cRGD for Hepatocellular Carcinoma Targeting and Therapy. Molecular Pharmaceutics, 20, 1951-1963.
https://doi.org/10.1021/acs.molpharmaceut.2c00842
[20]  Zhang, Z., Li, H., Xu, G. and Yao, P. (2018) Liver-Targeted Delivery of Insulin-Loaded Nanoparticles via Enterohepatic Circulation of Bile Acids. Drug Delivery, 25, 1224-1233.
https://doi.org/10.1080/10717544.2018.1469685
[21]  Allen, R.J., Mathew, B. and Rice, K.G. (2018) PEG-Peptide Inhibition of Scavenger Receptor Uptake of Nanoparticles by the Liver. Molecular Pharmaceutics, 15, 3881-3891.
https://doi.org/10.1021/acs.molpharmaceut.8b00355
[22]  Gan, L., Liu, Z. and Sun, C. (2018) Obesity Linking to Hepatocellular Carcinoma: A Global View. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1869, 97-102.
https://doi.org/10.1016/j.bbcan.2017.12.006
[23]  Lucock, M. (2000) Folic Acid: Nutritional Biochemistry, Molecular Biology, and Role in Disease Processes. Molecular Genetics and Metabolism, 71, 121-138.
https://doi.org/10.1006/mgme.2000.3027
[24]  Ibrahim, M.A.I., Othman, R., Chee, C.F. and Ahmad Fisol, F. (2023) Evaluation of Folate-Functionalized Nanoparticle Drug Delivery Systems-Effectiveness and Concerns. Biomedicines, 11, Article 2080.
https://doi.org/10.3390/biomedicines11072080
[25]  Xiang, L., Wang, X., Shao, Y., Jiao, Q., Cheng, J., Zheng, X., Zhou, S. and Chen, Y. (2023) Folate Decoration Supports the Targeting of Camptothecin Micelles against Activated Hepatic Stellate Cells and the Suppression of Fibrogenesis. ACS Applied Materials & Interfaces, 15, 2030-2042.
https://doi.org/10.1021/acsami.2c16616
[26]  Zhao, X., Yang, Y., Su, X., Xie, Y., Liang, Y., Zhou, T., Wu, Y. and Di, L. (2023) Transferrin-Modified Triptolide Liposome Targeting Enhances Anti-Hepatocellular Carcinoma Effects. Biomedicines, 11.
https://doi.org/10.3390/biomedicines11102869
[27]  Tian, H., Yu, L., Zhang, M., He, J., Sun, X. and Ni, P. (2023) Dextran-Doxorubicin Prodrug Nanoparticles Conjugated with CD147 Monoclonal Antibody for Targeted Drug Delivery in Hepatoma Therapy, Colloids and Surfaces. B. Biointerfaces, 228, Article 113400.
https://doi.org/10.1016/j.colsurfb.2023.113400
[28]  Gan, H., Chen, L., Sui, X., Wu, B., Zou, S., Li, A., Zhang, Y., Liu, X., Wang, D., Cai, S., Liu, X., Liang, Y. and Tang, X. (2018) Enhanced Delivery of Sorafenib with Anti-GPC3 Antibody-Conjugated TPGS-b-PCL/Pluronic P123 Polymeric Nanoparticles for Targeted Therapy of Hepatocellular Carcinoma. Materials Science & Engineering: C, 91, 395-403.
https://doi.org/10.1016/j.msec.2018.05.011
[29]  Stopeck, A.T., Nicholson, A.C., Mancini, F.P. and Hajjar, D.P. (1993) Cytokine Regulation of Low Density Lipoprotein Receptor Gene Transcription in HepG2 Cells. The Journal of Biological Chemistry, 268, 17489-17494.
https://doi.org/10.1016/S0021-9258(19)85360-7
[30]  Ao, M., Xiao, X. and Ao, Y. (2018) Low Density Lipoprotein Modified Silica Nanoparticles Loaded with Docetaxel and Thalidomide for Effective Chemotherapy of Liver Cancer. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas, 51, e6650.
https://doi.org/10.1590/1414-431x20176650
[31]  Tacke, F. (2017) Targeting Hepatic Macrophages to Treat Liver Diseases. Journal of Hepatology, 66, 1300-1312.
https://doi.org/10.1016/j.jhep.2017.02.026
[32]  Tan, P.K., Ostertag, T., Rosenthal, S.B., Chilin-Fuentes, D., Aidnik, H., Linker, S., Murphy, K., Miner, J.N. and Brenner, D.A. (2024) Role of Hepatic Stellate and Liver Sinusoidal Endothelial Cells in a Human Primary Cell Three-Dimensional Model of Nonalcoholic Steatohepatitis. The American Journal of Pathology, 194, 353-368.
https://doi.org/10.1016/j.ajpath.2023.12.005
[33]  Gilgenkrantz, H., Mallat, A., Moreau, R. and Lotersztajn, S. (2021) Targeting Cell-intrinsic Metabolism for Antifibrotic Therapy. Journal of Hepatology, 74, 1442-1454.
https://doi.org/10.1016/j.jhep.2021.02.012
[34]  Zhou, J.E., Sun, L., Liu, L., Jia, Y., Han, Y., Shao, J., Wang, J., Wang, Y., Yu, L. and Yan, Z. (2022) Hepatic Macrophage Targeted siRNA Lipid Nanoparticles Treat Non-alcoholic Steatohepatitis. Journal of Controlled Release: Official Journal of the Controlled Release Society, 343, 175-186.
https://doi.org/10.1016/j.jconrel.2022.01.038
[35]  Pandolfi, L., Frangipane, V., Bocca, C., Marengo, A., Tarro Genta, E., Bozzini, S., Morosini, M., D’Amato, M., Vitulo, S., Monti, M., Comolli, G., Scupoli, M.T., Fattal, E., Arpicco, S. and Meloni, F. (2019) Hyaluronic Acid-Decorated Liposomes as Innovative Targeted Delivery System for Lung Fibrotic Cells. Molecules, 24, Article 3291.
https://doi.org/10.3390/molecules24183291
[36]  Ashour, A.A., El-Kamel, A.H., Abdelmonsif, D.A., Khalifa, H.M. and Ramadan, A.A. (2021) Modified Lipid Nanocapsules for Targeted Tanshinone IIA Delivery in Liver Fibrosis. International Journal of Nanomedicine, 16, 8013-8033.
https://doi.org/10.2147/IJN.S331690
[37]  El-Mezayen, N.S., El-Hadidy, W.F., El-Refaie, W.M., Shalaby, T.I., Khattab, M.M. and El-Khatib, A.S. (2017) Hepatic Stellate Cell-Targeted Imatinib Nanomedicine versus Conventional Imatinib: A Novel Strategy with Potent Efficacy in Experimental Liver Fibrosis. Journal of Controlled Release: Official Journal of the Controlled Release Society, 266, 226-237.
https://doi.org/10.1016/j.jconrel.2017.09.035
[38]  Xiong, Y., Wu, B., Guo, X., Shi, D., Xia, H., Xu, H. and Liu, X. (2023) Galangin Delivered by Retinoic Acid-Modified Nanoparticles Targeted Hepatic Stellate Cells for the Treatment of Hepatic Fibrosis. RSC Advances, 13, 10987-11001.
https://doi.org/10.1039/D2RA07561J
[39]  Li, X., Jin, Q., Yao, Q., Zhou, Y., Zou, Y., Li, Z., Zhang, S. and Tu, C. (2017) Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation. Frontiers in Immunology, 8, Article 801.
https://doi.org/10.3389/fimmu.2017.00801
[40]  Das, R.P., Gandhi, V.V., Singh, B.G. and Kunwar, A. (2019) Passive and Active Drug Targeting: Role of Nanocarriers in Rational Design of Anticancer Formulations. Current Pharmaceutical Design, 25, 3034-3056.
https://doi.org/10.2174/1381612825666190830155319
[41]  Wang, K., Shen, R., Meng, T., Hu, F. and Yuan, H. (2022) Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules, 27, Article 2981.
https://doi.org/10.3390/molecules27092981
[42]  Chimalakonda, K.C., Agarwal, H.K., Kumar, A., Parang, K. and Mehvar, R. (2007) Synthesis, Analysis, in Vitro Characterization, and in Vivo Disposition of a Lamivudine-Dextran Conjugate for Selective Antiviral Delivery to the Liver. Bioconjugate Chemistry, 18, 2097-2108.
https://doi.org/10.1021/bc700193d
[43]  Alrefai, W.A. and Gill, R.K. (2007) Bile Acid Transporters: Structure, Function, Regulation and Pathophysiological Implications. Pharmaceutical Research, 24, 1803-1823.
https://doi.org/10.1007/s11095-007-9289-1
[44]  St-Pierre, M.V., Kullak-Ublick, G.A., Hagenbuch, B. and Meier, P.J. (2001) Transport of Bile Acids in Hepatic and Non-Hepatic Tissues. The Journal of Experimental Biology, 204, 1673-1686.
https://doi.org/10.1242/jeb.204.10.1673
[45]  Dong, Z., Li, Q., Guo, D., Shu, Y. and Polli, J.E. (2015) Synthesis and Evaluation of Bile Acid-Ribavirin Conjugates as Prodrugs to Target the Liver. Journal of Pharmaceutical Sciences, 104, 2864-2876.
https://doi.org/10.1002/jps.24375
[46]  Xiao, L., Yu, E., Yue, H. and Li, Q. (2019) Enhanced Liver Targeting of Camptothecin via Conjugation with Deoxycholic Acid. Molecules, 24. Article 1179.
https://doi.org/10.3390/molecules24061179
[47]  Gao, Y., Kong, F., Song, X., Shang, J., Yao, L., Xia, J., Peng, Y., Liu, W., Gong, H., Mu, M., Cui, H., Han, T., Chen, W., Wu, X., Yang, Y., Yan, X., Jin, Z., Wang, P., Zhu, Q., Chen, L., Zhao, C., Zhang, D., Jin, W., Wang, D., Wen, X., Liu, C., Jia, J., Mao, Q., Ding, Y., Jin, X., Zhang, Z., Mao, Q., Li, G. and Niu, J. (2022) Pradefovir Treatment in Patients with Chronic Hepatitis B: Week 24 Results from a Multicenter, Double-Blind, Randomized, Noninferiority, Phase 2 Trial. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 74, 1925-1932.
https://doi.org/10.1093/cid/ciab763
[48]  Liu, M., Song, W., Du, X., Su, J., Dong, K., Chen, Y. and Peng, Z. (2018) NQO1-Selective Activated Prodrug of Triptolide: Synthesis and Antihepatocellular Carcinoma Activity Evaluation. ACS Medicinal Chemistry Letters, 9, 1253-1257.
https://doi.org/10.1021/acsmedchemlett.8b00404
[49]  Li, D., Xu, W., Li, P., Ding, J., Cheng, Z., Chen, L., Yan, L. and Chen, X. (2016) Self-Targeted Polysaccharide Prodrug Suppresses Orthotopic Hepatoma. Molecular Pharmaceutics, 13, 4231-4235.
https://doi.org/10.1021/acs.molpharmaceut.6b00747
[50]  Louzoun-Zada, S., Jaber, Q.Z. and Fridman, M. (2019) Guiding Drugs to Target-Harboring Organelles: Stretching Drug-Delivery to a Higher Level of Resolution. Angewandte Chemie (International ed. in English), 58, 15584-15594.
https://doi.org/10.1002/anie.201906284
[51]  Jung, Y.K., Shin, E. and Kim, B.S. (2015) Cell Nucleus-Targeting Zwitterionic Carbon Dots. Scientific Reports, 5, 18807.
https://doi.org/10.1038/srep18807
[52]  Glover, D.J., Ng, S.M., Mechler, A., Martin, L.L. and Jans, D.A. (2009) Multifunctional Protein Nanocarriers for Targeted Nuclear Gene Delivery in Nondividing Cells. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23, 2996-3006.
https://doi.org/10.1096/fj.09-131425
[53]  Xiong, L., Du, X., Kleitz, F. and Qiao, S.Z. (2015) Cancer-Cell-Specific Nuclear-Targeted Drug Delivery by Dual-Ligand-Modified Mesoporous Silica Nanoparticles, Small (Weinheim an der Bergstrasse, Germany), 11, 5919-5926.
https://doi.org/10.1002/smll.201501056
[54]  Cai, Y., Shen, H., Zhan, J., Lin, M., Dai L., Ren, C., Shi, Y., Liu, J., Gao, J. and Yang, Z. (2017) Supramolecular “Trojan Horse” for Nuclear Delivery of Dual Anticancer Drugs. Journal of the American Chemical Society, 139, 2876-2879.
https://doi.org/10.1021/jacs.6b12322
[55]  Park, J.Y., Cho, Y.L., Chae, J.R., Moon, S.H., Cho, W.G., Choi, Y.J., Lee, S.J. and Kang, W.J. (2018) Gemcitabine-Incorporated G-Quadruplex Aptamer for Targeted Drug Delivery into Pancreas Cancer, Molecular Therapy. Nucleic Acids, 12, 543-553.
https://doi.org/10.1016/j.omtn.2018.06.003
[56]  Protasoni, M. and Zeviani, M. (2021) Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. International Journal of Molecular Sciences, 22, Article 586.
https://doi.org/10.3390/ijms22020586
[57]  Zinovkin, R.A. and Zamyatnin, A.A. (2019) Mitochondria-Targeted Drugs. Current Molecular Pharmacology, 12, 202-214.
https://doi.org/10.2174/1874467212666181127151059
[58]  Naz, S., Wang, M., Han, Y., Hu, B., Teng, L., Zhou, J., Zhang, H. and Chen, J. (2019) Enzyme-Responsive Mesoporous Silica Nanoparticles for Tumor Cells and Mitochondria Multistage-Targeted Drug Delivery. International Journal of Nanomedicine, 14, 2533-2542.
https://doi.org/10.2147/IJN.S202210
[59]  Chan, M.S., Liu, L.S., Leung, H.M. and Lo, P.K. (2017) Cancer-Cell-Specific Mitochondria-Targeted Drug Delivery by Dual-Ligand-Functionalized Nanodiamonds Circumvent Drug Resistance. ACS Applied Materials & Interfaces, 9, 11780-11789.
https://doi.org/10.1021/acsami.6b15954
[60]  Wlodkowic, D., Skommer, J., McGuinness, D., Hillier, C. and Darzynkiewicz, Z. (2009) ER-Golgi Network—A Future Target for Anti-Cancer Therapy. Leukemia Research, 33, 1440-1447.
https://doi.org/10.1016/j.leukres.2009.05.025
[61]  Kang, J.Y., Kim, S., Kim, J., Kang, N.G., Yang, C.S., Min, S.J. and Kim, J.W. (2021) Cell-Penetrating Peptide-Conjugated Lipid/Polymer Hybrid Nanovesicles for Endoplasmic Reticulum-Targeting Intracellular Delivery. Journal of Materials Chemistry B, 9, 464-470.
https://doi.org/10.1039/D0TB01940B

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133