|
呼吸机相关性肺损伤的研究进展与防治策略
|
Abstract:
应用呼吸机进行机械通气是临床上治疗急性肺损伤、急性呼吸窘迫综合征及低氧血症的关键手段。然而,不当的参数设置常导致呼吸机相关性肺损伤,包括原发肺组织病变加重和健康肺泡受损,其高发生率和致死率已引起全球医学界的高度重视。本文就呼吸机相关性肺损伤的可能原因及当前临床认可的干预措施进行综述,特别强调了围术期精准肺保护策略的应用。
The use of ventilators for mechanical ventilation is a key clinical treatment for acute lung injury, acute respiratory distress syndrome and hypoxemia. However, improper parameter settings often lead to ventilator-associated lung injury, including exacerbation of primary lung tissue lesions and damage to healthy alveoli, and its high incidence and mortality have attracted the attention of the global medical community. This article reviews the possible causes of ventilator-associated lung injury and currently clinically accepted interventions, with particular emphasis on the application of perioperative precision lung protection strategies.
[1] | Zhou, J.X., Jiang, Z.Y., Liu, M.Z. and Guo, G.H. (2020) Advances in the Research of Diagnosis and Treatment of Ventilator-Induced Lung Injury after Burn. Chinese Journal of Burns, 36, 137-141. |
[2] | 胡志成, 周树生. 呼吸机相关性肺炎的危险因素及病原学分析: 县级医院ICU的3年病例分析[J]. 中华危重病急救医学, 2018, 30(10): 933-938. |
[3] | Almirall, J., Boixeda, R., de la Torre, M.C. and Torres, A. (2024) Epidemiology and Pathogenesis of Aspiration Pneumonia. Seminars in Respiratory and Critical Care Medicine, 45, 621-625. https://doi.org/10.1055/s-0044-1793907 |
[4] | Daschner, F., Kappstein, I., Engels, I., Reuschenbach, K., Pfisterer, J., Krieg, N., et al. (1988) Stress Ulcer Prophylaxis and Ventilation Pneumonia Prevention by Antibacterial Cytoprotective Agents? Infection Control & Hospital Epidemiology, 9, 59-65. https://doi.org/10.1086/645786 |
[5] | Niederman, M.S. (1990) Gram-Negative Colonization of the Respiratory Tract: Pathogenesis and Clinical Consequences. Seminars in Respiratory Infections, 5, 173-184. |
[6] | Garnier, M., Constantin, J., Heming, N., Camous, L., Ferré, A., Razazi, K., et al. (2023) Epidemiology, Risk Factors and Prognosis of Ventilator-Associated Pneumonia during Severe COVID-19: Multicenter Observational Study across 149 European Intensive Care Units. Anaesthesia Critical Care & Pain Medicine, 42, Article ID: 101184. https://doi.org/10.1016/j.accpm.2022.101184 |
[7] | 吴海燕. 老年机械通气患者呼吸机气路管道细菌分布及相关因素分析[J]. 实用医院临床杂志, 2010, 7(2): 67-69. |
[8] | Tryba, M. (2001) Role of Acid Suppressants in Intensive Care Medicine. Best Practice & Research Clinical Gastroenterology, 15, 447-461. https://doi.org/10.1053/bega.2001.0193 |
[9] | Ko, Y., Yang, M., Huang, H., Hsu, C. and Chen, L. (2013) NF-κB Activation in Myeloid Cells Mediates Ventilator-Induced Lung Injury. Respiratory Research, 14, Article No. 69. https://doi.org/10.1186/1465-9921-14-69 |
[10] | 黄絮, 詹庆元. 呼吸机相关肺损伤的发生机制和处理对策[J]. 中华结核和呼吸杂志, 2014(6): 471-473. |
[11] | Perlman, C.E., Lederer, D.J. and Bhattacharya, J. (2011) Micromechanics of Alveolar Edema. American Journal of Respiratory Cell and Molecular Biology, 44, 34-39. https://doi.org/10.1165/rcmb.2009-0005oc |
[12] | 欧顶琴, 方育. 呼吸机相关性肺损伤生物伤研究进展[J]. 河北医药, 2022, 44(3): 442-446, 452. |
[13] | Starobova, H., Nadar, E.I. and Vetter, I. (2020) The NLRP3 Inflammasome: Role and Therapeutic Potential in Pain Treatment. Frontiers in Physiology, 11, Article No. 1016. https://doi.org/10.3389/fphys.2020.01016 |
[14] | Liu, H., Gu, C., Liu, M., Liu, G., Wang, D., Liu, X., et al. (2019) Ventilator-Induced Lung Injury Is Alleviated by Inhibiting NLRP3 Inflammasome Activation. Molecular Immunology, 111, 1-10. https://doi.org/10.1016/j.molimm.2019.03.011 |
[15] | Kuipers, M.T., Aslami, H., Janczy, J.R., van der Sluijs, K.F., Vlaar, A.P.J., Wolthuis, E.K., et al. (2012) Ventilator-induced Lung Injury Is Mediated by the NLRP3 Inflammasome. The Journal of the American Society of Anesthesiologists, 116, 1104-1115. https://doi.org/10.1097/aln.0b013e3182518bc0 |
[16] | Petrucci, N. and Iacovelli, W. (2013) Lung Protective Ventilation Strategy for the Acute Respiratory Distress Syndrome. Cochrane Database of Systematic Reviews, No. 3. |
[17] | Levin, M.A., McCormick, P.J., Lin, H.M., Hosseinian, L. and Fischer, G.W. (2014) Low Intraoperative Tidal Volume Ventilation with Minimal PEEP Is Associated with Increased Mortality. British Journal of Anaesthesia, 113, 97-108. https://doi.org/10.1093/bja/aeu054 |
[18] | 王玲, 钟毅, 单热爱. 允许性高碳酸血症在临床中的应用进展[J]. 赣南医学院学报, 2024, 44(4): 404-408. |
[19] | 林纤依, 周有发, 陈钢. 肺保护性通气策略在麻醉及围手术期中的应用[J]. 现代实用医学, 2021, 33(2): 141-145. |
[20] | Bolther, M., Henriksen, J., Holmberg, M.J., Jessen, M.K., Vallentin, M.F., Hansen, F.B., et al. (2022) Ventilation Strategies during General Anesthesia for Noncardiac Surgery: A Systematic Review and Meta-Analysis. Anesthesia & Analgesia, 135, 971-985. https://doi.org/10.1213/ane.0000000000006106 |
[21] | Bluth, T., Serpa Neto, A., Schultz, M.J., Pelosi, P. and Gama de Abreu, M. (2019) Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) with Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA, 321, 2292-2305. https://doi.org/10.1001/jama.2019.7505 |
[22] | 李丽霞, 赵磊, 王天龙, 等. 肺复张策略的临床应用及研究进展[J]. 医学综述, 2021, 27(18): 3641-3646. |
[23] | 李欢欢. 早期高频振荡通气治疗极早产儿呼吸窘迫综合征: 一项倾向性评分匹配研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2024. |
[24] | 何明嫄. 早产儿呼吸窘迫综合征高频振荡通气后两种撤机方式的安全性研究: 前瞻性随机病例对照试验[D]: [硕士学位论文]. 厦门: 厦门大学, 2021. |
[25] | 兰青. 无创高频振荡通气对Ⅱ-Ⅲ级RDS患儿血气指标的影响[J]. 现代诊断与治疗, 2021, 32(7): 1120-1121. |
[26] | 马肖寒, 周凤丽, 裴运丽, 等. 俯卧位机械通气配合肺复张对呼吸机相关性肺炎的影响[J]. 全科护理, 2023, 21(23): 3274-3277. |