|
TRIM蛋白在特发性肺纤维化中的研究进展
|
Abstract:
特发性肺纤维化(IPF)是一种进行性且最终致命的纤维化肺病,可以导致进行性的肺功能下降,其发展被认为与遗传、环境、免疫、炎症、自噬、衰老等因素有关。TRIM蛋白是一个高度保守的E3泛素连接酶家族,参与多个过程:包括细胞内信号传导、发育、细胞凋亡、蛋白质质量控制、先天免疫、自噬和致癌作用,近年来,有关TRIM蛋白在疾病中的研究越来越多,研究表明它们可以参与细胞内信号传导、发育、细胞凋亡、蛋白质质量控制、先天免疫、自噬和致癌等多个过程,它们的失调会导致癌症、免疫疾病或发育障碍等疾病,参考肺纤维化所涉及的发生发展机制,TRIM蛋白在各器官纤维化中的研究也逐渐展开,本文将主要论述TRIM蛋白在肺纤维化中的研究进展。
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal fibrotic lung disease that can lead to progressive decline in lung function, and its development is thought to be related to genetic, environmental, immune, inflammatory, autophagy, aging and other factors. TRIM proteins are a highly conserved family of E3 ubiquitin ligases involved in several processes: It includes intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy and carcinogenesis. In recent years, more and more studies on TRIM proteins in diseases have shown that they can participate in many processes such as intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy and carcinogenesis. Their disorders can lead to cancer, immune diseases or developmental disorders and other diseases, referring to the occurrence and development mechanism involved in pulmonary fibrosis, the study of TRIM protein in various organ fibrosis is also gradually launched, this paper will mainly discuss the research progress of TRIM protein in pulmonary fibrosis.
[1] | Mei, Q., Liu, Z., Zuo, H., Yang, Z. and Qu, J. (2022) Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Frontiers in Pharmacology, 12, Article 797292. https://doi.org/10.3389/fphar.2021.797292 |
[2] | Noble, P.W., Barkauskas, C.E. and Jiang, D. (2012) Pulmonary Fibrosis: Patterns and Perpetrators. Journal of Clinical Investigation, 122, 2756-2762. https://doi.org/10.1172/jci60323 |
[3] | Shenderov, K., Collins, S.L., Powell, J.D. and Horton, M.R. (2021) Immune Dysregulation as a Driver of Idiopathic Pulmonary Fibrosis. Journal of Clinical Investigation, 131, e143226. https://doi.org/10.1172/jci143226 |
[4] | Parra, E.R., Kairalla, R.A., Ribeiro de Carvalho, C.R., Eher, E. and Capelozzi, V.L. (2006) Inflammatory Cell Phenotyping of the Pulmonary Interstitium in Idiopathic Interstitial Pneumonia. Respiration, 74, 159-169. https://doi.org/10.1159/000097133 |
[5] | Kapanci, Y., Desmouliere, A., Pache, J.C., Redard, M. and Gabbiani, G. (1995) Cytoskeletal Protein Modulation in Pulmonary Alveolar Myofibroblasts during Idiopathic Pulmonary Fibrosis. Possible Role of Transforming Growth Factor β and Tumor Necrosis Factor α. American Journal of Respiratory and Critical Care Medicine, 152, 2163-2169. https://doi.org/10.1164/ajrccm.152.6.8520791 |
[6] | Carré, P.C., Mortenson, R.L., King, T.E., Noble, P.W., Sable, C.L. and Riches, D.W. (1991) Increased Expression of the Interleukin-8 Gene by Alveolar Macrophages in Idiopathic Pulmonary Fibrosis. a Potential Mechanism for the Recruitment and Activation of Neutrophils in Lung Fibrosis. Journal of Clinical Investigation, 88, 1802-1810. https://doi.org/10.1172/jci115501 |
[7] | Gregory, A.D., Kliment, C.R., Metz, H.E., Kim, K., Kargl, J., Agostini, B.A., et al. (2015) Neutrophil Elastase Promotes Myofibroblast Differentiation in Lung Fibrosis. Journal of Leukocyte Biology, 98, 143-152. https://doi.org/10.1189/jlb.3hi1014-493r |
[8] | Takemasa, A., Ishii, Y. and Fukuda, T. (2012) A Neutrophil Elastase Inhibitor Prevents Bleomycin-Induced Pulmonary Fibrosis in Mice. European Respiratory Journal, 40, 1475-1482. https://doi.org/10.1183/09031936.00127011 |
[9] | Ando, M., Miyazaki, E., Ito, T., Hiroshige, S., Nureki, S., Ueno, T., et al. (2010) Significance of Serum Vascular Endothelial Growth Factor Level in Patients with Idiopathic Pulmonary Fibrosis. Lung, 188, 247-252. https://doi.org/10.1007/s00408-009-9223-x |
[10] | Heukels, P., Moor, C.C., von der Thüsen, J.H., Wijsenbeek, M.S. and Kool, M. (2019) Inflammation and Immunity in IPF Pathogenesis and Treatment. Respiratory Medicine, 147, 79-91. https://doi.org/10.1016/j.rmed.2018.12.015 |
[11] | Wolters, P.J., Collard, H.R. and Jones, K.D. (2014) Pathogenesis of Idiopathic Pulmonary Fibrosis. Annual Review of Pathology: Mechanisms of Disease, 9, 157-179. https://doi.org/10.1146/annurev-pathol-012513-104706 |
[12] | Inui, N., Sakai, S. and Kitagawa, M. (2021) Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway. International Journal of Molecular Sciences, 22, Article 6107. https://doi.org/10.3390/ijms22116107 |
[13] | Zhu, Y., Yang, M., Li, X., Xu, W., Gao, W., Chen, Y., et al. (2021) NOGO-B Promotes Epithelial-Mesenchymal Transition in Lung Fibrosis via PERK Branch of the Endoplasmic Reticulum Stress Pathway. Annals of Translational Medicine, 9, 563-563. https://doi.org/10.21037/atm-20-6143 |
[14] | Qian, H. and Chen, L. (2021) TRIM Proteins in Fibrosis. Biomedicine & Pharmacotherapy, 144, Article ID: 112340. https://doi.org/10.1016/j.biopha.2021.112340 |
[15] | Li, L., Zhang, S., Wei, L., Wang, Z., Ma, W., Liu, F., et al. (2020) Anti-Fibrotic Effect of Melittin on TRIM47 Expression in Human Embryonic Lung Fibroblast through Regulating TRIM47 Pathway. Life Sciences, 256, Article ID: 117893. https://doi.org/10.1016/j.lfs.2020.117893 |
[16] | Zhou, M., Ouyang, J., Zhang, G. and Zhu, X. (2022) Prognostic Value of Tripartite Motif (TRIM) Family Gene Signature from Bronchoalveolar Lavage Cells in Idiopathic Pulmonary Fibrosis. BMC Pulmonary Medicine, 22, Article No. 467. https://doi.org/10.1186/s12890-022-02269-4 |
[17] | Boutanquoi, P., Burgy, O., Beltramo, G., Bellaye, P., Dondaine, L., Marcion, G., et al. (2020) TRIM33 Prevents Pulmonary Fibrosis by Impairing TGF-β1 Signalling. European Respiratory Journal, 55, Article ID: 1901346. https://doi.org/10.1183/13993003.01346-2019 |
[18] | Lu, M., Chen, W., Zhuang, W. and Zhan, X. (2020) Label-Free Quantitative Identification of Abnormally Ubiquitinated Proteins as Useful Biomarkers for Human Lung Squamous Cell Carcinomas. EPMA Journal, 11, 73-94. https://doi.org/10.1007/s13167-019-00197-8 |
[19] | Yi, H., Luo, D., Xiao, Y. and Jiang, D. (2021) Knockdown of Long Noncoding RNA DLEU2 Suppresses Idiopathic Pulmonary Fibrosis by Regulating the microRNA-369-3p/TRIM2 Axis. International Journal of Molecular Medicine, 47, Article No. 80. https://doi.org/10.3892/ijmm.2021.4913 |
[20] | Stefanov, A.N., Fox, J. and Haston, C.K. (2013) Positional Cloning Reveals Strain-Dependent Expression of Trim16 to Alter Susceptibility to Bleomycin-Induced Pulmonary Fibrosis in Mice. PLOS Genetics, 9, e1003203. https://doi.org/10.1371/journal.pgen.1003203 |
[21] | Liu, W., Yi, Y., Zhang, C., Zhou, B., Liao, L., Liu, W., et al. (2021) The Expression of TRIM6 Activates the mTORC1 Pathway by Regulating the Ubiquitination of TSC1-TSC2 to Promote Renal Fibrosis. Frontiers in Cell and Developmental Biology, 8, Article 616747. https://doi.org/10.3389/fcell.2020.616747 |
[22] | Cong, X., Nagre, N., Herrera, J., Pearson, A.C., Pepper, I., Morehouse, R., et al. (2020) TRIM72 Promotes Alveolar Epithelial Cell Membrane Repair and Ameliorates Lung Fibrosis. Respiratory Research, 21, Article No. 132. https://doi.org/10.1186/s12931-020-01384-2 |
[23] | Lee, J., Yoshida, M., Kim, M., Lee, J., Baek, A., Jang, A.S., et al. (2018) Involvement of Alveolar Epithelial Cell Necroptosis in Idiopathic Pulmonary Fibrosis Pathogenesis. American Journal of Respiratory Cell and Molecular Biology, 59, 215-224. https://doi.org/10.1165/rcmb.2017-0034oc |
[24] | Xie, Y., Zhao, Y., Shi, L., Li, W., Chen, K., Li, M., et al. (2020) Gut Epithelial TSC1/mTOR Controls RIPK3-Dependent Necroptosis in Intestinal Inflammation and Cancer. Journal of Clinical Investigation, 130, 2111-2128. https://doi.org/10.1172/jci133264 |
[25] | Di Rienzo, M., Romagnoli, A., Antonioli, M., Piacentini, M. and Fimia, G.M. (2020) TRIM Proteins in Autophagy: Selective Sensors in Cell Damage and Innate Immune Responses. Cell Death & Differentiation, 27, 887-902. https://doi.org/10.1038/s41418-020-0495-2 |
[26] | Xiang, Y., Li, C., Wang, Z., Feng, J., Zhang, J., Yang, Y., et al. (2024) TRIM13 Reduces Damage to Alveolar Epithelial Cells in COPD by Inhibiting Endoplasmic Reticulum Stress-Induced Er-Phagy. Lung, 202, 821-830. https://doi.org/10.1007/s00408-024-00753-8 |
[27] | El-Asmi, F. and Chelbi-Alix, M.K. (2020) Les Isoformes de PML et la réponse au TGF-β. Médecine/Sciences, 36, 50-56. https://doi.org/10.1051/medsci/2019269 |
[28] | Bacon, C.W., Challa, A., Hyder, U., Shukla, A., Borkar, A.N., Bayo, J., et al. (2020) KAP1 Is a Chromatin Reader That Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Molecular Cell, 78, 1133-1151.e14. https://doi.org/10.1016/j.molcel.2020.04.024 |
[29] | Chen, N., Balasenthil, S., Reuther, J. and Killary, A.M. (2014) DEAR1, a Novel Tumor Suppressor That Regulates Cell Polarity and Epithelial Plasticity. Cancer Research, 74, 5683-5689. https://doi.org/10.1158/0008-5472.can-14-1171 |
[30] | Chen, L., Huang, J., Ji, Y., Mei, F., Wang, P., Deng, K., et al. (2017) Tripartite Motif 8 Contributes to Pathological Cardiac Hypertrophy through Enhancing Transforming Growth Factor β-Activated Kinase 1-Dependent Signaling Pathways. Hypertension, 69, 249-258. https://doi.org/10.1161/hypertensionaha.116.07741 |
[31] | Gallardo-Vara, E., Ruiz-Llorente, L., Casado-Vela, J., Ruiz-Rodríguez, M.J., López-Andrés, N., Pattnaik, A.K., et al. (2019) Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells, 8, Article 1082. https://doi.org/10.3390/cells8091082 |