|
特发性肺纤维化发病机制的研究进展
|
Abstract:
特发性肺纤维化(IPF)是一种不明原因导致的慢性、进行性、间质性肺部疾病,以弥漫性肺泡炎和肺泡结构紊乱并最终导致肺间质纤维化为主要特征。IPF预后普遍较差,诊断后的中位生存时间仅为3~5年,约5%~20%的患者病程中可出现急性加重,急性加重后中位生存时间相较之前将进一步减少。目前现有的治疗手段无法彻底治愈IPF,治疗目的主要为延缓疾病进展。本文旨在对现有IPF的致病机制进行回顾与总结,以期为寻找合适的治疗靶点及新的治疗途径提供新的思路。
Idiopathic pulmonary fibrosis (IPF) is an unexplained, chronic, progressive, interstitial lung disease characterized by diffuse alveolitis and alveolar structural disturbances that eventually lead to interstitial fibrosis. The prognosis of IPF is generally poor, with a median survival time of 3~5 years after diagnosis, with acute exacerbations occurring in about 5%~20% of patients. After acute exacerbation, the median survival time will be further reduced compared with the previous one. Currently available treatments do not provide a complete cure for IPF, and the main goal of treatment is to slow down the progression of the disease. The aim of this paper is to review and summarize the existing pathogenic mechanisms of IPF, with a view to providing new ideas for finding suitable therapeutic targets and new therapeutic pathways.
[1] | 蔡后荣. 2011年特发性肺纤维化诊断和治疗循证新指南解读[J]. 中国呼吸与危重监护杂志, 2011, 10(4): 313-316. |
[2] | Maher, T.M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J.M., et al. (2021) Global Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Respiratory Research, 22, Article No. 197. https://doi.org/10.1186/s12931-021-01791-z |
[3] | Alsomali, H., Palmer, E., Aujayeb, A. and Funston, W. (2023) Early Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis: A Narrative Review. Pulmonary Therapy, 9, 177-193. https://doi.org/10.1007/s41030-023-00216-0 |
[4] | 中华医学会呼吸病学分会间质性肺疾病学组. 特发性肺纤维化诊断和治疗中国Z专家共识[J]. 中华结核和呼吸杂志, 2016, 39(6): 427-432. |
[5] | Thomson, C.C., Duggal, A., Bice, T., Lederer, D.J., Wilson, K.C. and Raghu, G. (2018) 2018 Clinical Practice Guideline Summary for Practicing Clinicians: Diagnosis of Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 16, 285-290. https://doi.org/10.1513/annalsats.201809-604cme |
[6] | Richeldi, L., Collard, H.R. and Jones, M.G. (2017) Idiopathic Pulmonary Fibrosis. The Lancet, 389, 1941-1952. https://doi.org/10.1016/s0140-6736(17)30866-8 |
[7] | Raghu, G. and Selman, M. (2015) Nintedanib and Pirfenidone. New Antifibrotic Treatments Indicated for Idiopathic Pulmonary Fibrosis Offer Hopes and Raises Questions. American Journal of Respiratory and Critical Care Medicine, 191, 252-254. https://doi.org/10.1164/rccm.201411-2044ed |
[8] | Gulati, S. and Luckhardt, T.R. (2020) Updated Evaluation of the Safety, Efficacy and Tolerability of Pirfenidone in the Treatment of Idiopathic Pulmonary Fibrosis. Drug, Healthcare and Patient Safety, 12, 85-94. https://doi.org/10.2147/dhps.s224007 |
[9] | 梁佳龙, 陈静瑜, 郑明峰, 等. 肺移植治疗特发性肺纤维化的研究进展[J]. 医学综述, 2022, 28(8): 1573-1578. |
[10] | Fu, J., Lu, L., Wang, H., Hou, Y. and Dou, H. (2021) Hirsutella sinensis Mycelium Regulates Autophagy of Alveolar Macrophages via TLR4/NF-κB Signaling Pathway. International Journal of Medical Sciences, 18, 1810-1823. https://doi.org/10.7150/ijms.51654 |
[11] | Wynn, T. (2007) Cellular and Molecular Mechanisms of Fibrosis. The Journal of Pathology, 214, 199-210. https://doi.org/10.1002/path.2277 |
[12] | Desai, O., Winkler, J., Minasyan, M. and Herzog, E.L. (2018) The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Frontiers in Medicine, 5, Article 43. https://doi.org/10.3389/fmed.2018.00043 |
[13] | Dong, J. and Ma, Q. (2018) Macrophage Polarization and Activation at the Interface of Multi-Walled Carbon Nanotube-Induced Pulmonary Inflammation and Fibrosis. Nanotoxicology, 12, 153-168. https://doi.org/10.1080/17435390.2018.1425501 |
[14] | dos Santos, G., Kutuzov, M.A. and Ridge, K.M. (2012) The Inflammasome in Lung Diseases. American Journal of Physiology-Lung Cellular and Molecular Physiology, 303, L627-L633. https://doi.org/10.1152/ajplung.00225.2012 |
[15] | Li, G., Jin, F., Du, J., He, Q., Yang, B. and Luo, P. (2019) Macrophage-Secreted TSLP and MMP9 Promote Bleomycin-Induced Pulmonary Fibrosis. Toxicology and Applied Pharmacology, 366, 10-16. https://doi.org/10.1016/j.taap.2019.01.011 |
[16] | 蔡泽慧, 赵鹏, 张蓝熙, 等. 巨噬细胞活化参与肺纤维化机制研究进展[J]. 中国老年学杂志, 2022, 42(15): 3853-3857. |
[17] | Mou, Y., Wu, G., Wang, Q., Pan, T., Zhang, L., Xu, Y., et al. (2022) Macrophage‐Targeted Delivery of siRNA to Silence Mecp2 Gene Expression Attenuates Pulmonary Fibrosis. Bioengineering & Translational Medicine, 7, e10280. https://doi.org/10.1002/btm2.10280 |
[18] | van der Vliet, A., Janssen-Heininger, Y.M.W. and Anathy, V. (2018) Oxidative Stress in Chronic Lung Disease: From Mitochondrial Dysfunction to Dysregulated Redox Signaling. Molecular Aspects of Medicine, 63, 59-69. https://doi.org/10.1016/j.mam.2018.08.001 |
[19] | McGuinness, A. and Sapey, E. (2017) Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. Journal of Clinical Medicine, 6, Article 21. https://doi.org/10.3390/jcm6020021 |
[20] | Hara, H., Kuwano, K. and Araya, J. (2018) Mitochondrial Quality Control in COPD and IPF. Cells, 7, Article 86. https://doi.org/10.3390/cells7080086 |
[21] | Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and Ros-Induced ROS Release. Physiological Reviews, 94, 909-950. https://doi.org/10.1152/physrev.00026.2013 |
[22] | Veith, C., Drent, M., Bast, A., van Schooten, F.J. and Boots, A.W. (2017) The Disturbed Redox-Balance in Pulmonary Fibrosis Is Modulated by the Plant Flavonoid Quercetin. Toxicology and Applied Pharmacology, 336, 40-48. https://doi.org/10.1016/j.taap.2017.10.001 |
[23] | 蒋怡芳, 范晓杰, 刘晓, 等. 柚皮素对博莱霉素诱导的小鼠肺纤维化的改善作用及其作用机制[J]. 安徽医科大学学报, 2021, 56(2): 202-207. |
[24] | Estornut, C., Milara, J., Bayarri, M.A., Belhadj, N. and Cortijo, J. (2022) Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.794997 |
[25] | He, C., Larson-Casey, J.L., Gu, L., Ryan, A.J., Murthy, S. and Carter, A.B. (2016) Cu, Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 55, 58-71. https://doi.org/10.1165/rcmb.2015-0183oc |
[26] | Kurundkar, A. and Thannickal, V.J. (2016) Redox Mechanisms in Age-Related Lung Fibrosis. Redox Biology, 9, 67-76. https://doi.org/10.1016/j.redox.2016.06.005 |
[27] | Peng, L., Wen, L., Shi, Q., Gao, F., Huang, B., Meng, J., et al. (2020) Scutellarin Ameliorates Pulmonary Fibrosis through Inhibiting NF-κB/NLRP3-Mediated Epithelial-Mesenchymal Transition and Inflammation. Cell Death & Disease, 11, Article No. 978. https://doi.org/10.1038/s41419-020-03178-2 |
[28] | Yang, J., Antin, P., Berx, G., et al. (2020) EMT International Association (TEMTIA). Guidelines and Definitions for Research on Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 21, 341-352. https://doi.org/10.1038/s41580-020-0237-9 |
[29] | Wolters, P.J., Collard, H.R. and Jones, K.D. (2014) Pathogenesis of Idiopathic Pulmonary Fibrosis. Annual Review of Pathology: Mechanisms of Disease, 9, 157-179. https://doi.org/10.1146/annurev-pathol-012513-104706 |
[30] | Movahednia, M.M., Kidwai, F.K., Zou, Y., Tong, H.J., Liu, X., Islam, I., et al. (2015) Differential Effects of the Extracellular Microenvironment on Human Embryonic Stem Cell Differentiation into Keratinocytes and Their Subsequent Replicative Life Span. Tissue Engineering Part A, 21, 1432-1443. https://doi.org/10.1089/ten.tea.2014.0551 |
[31] | Tanjore, H., Blackwell, T.S. and Lawson, W.E. (2012) Emerging Evidence for Endoplasmic Reticulum Stress in the Pathogenesis of Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302, L721-L729. https://doi.org/10.1152/ajplung.00410.2011 |
[32] | Burman, A., Tanjore, H. and Blackwell, T.S. (2018) Endoplasmic Reticulum Stress in Pulmonary Fibrosis. Matrix Biology, 68, 355-365. https://doi.org/10.1016/j.matbio.2018.03.015 |
[33] | Byrne, A.J., Maher, T.M. and Lloyd, C.M. (2016) Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends in Molecular Medicine, 22, 303-316. https://doi.org/10.1016/j.molmed.2016.02.004 |
[34] | Yanai, H., Shteinberg, A., Porat, Z., Budovsky, A., Braiman, A., Zeische, R., et al. (2015) Cellular Senescence-Like Features of Lung Fibroblasts Derived from Idiopathic Pulmonary Fibrosis Patients. Aging, 7, 664-672. https://doi.org/10.18632/aging.100807 |
[35] | Wang, B., Han, J., Elisseeff, J.H. and Demaria, M. (2024) The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications. Nature Reviews Molecular Cell Biology, 25, 958-978. https://doi.org/10.1038/s41580-024-00727-x |
[36] | Chakravarti, D., LaBella, K.A. and DePinho, R.A. (2021) Telomeres: History, Health, and Hallmarks of Aging. Cell, 184, 306-322. https://doi.org/10.1016/j.cell.2020.12.028 |
[37] | Armanios, M.Y., Chen, J.L., Cogan, J.D., Alder, J.K., Ingersoll, R.G., Markin, C., et al. (2007) Telomerase Mutations in Families with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 356, 1317-1326. https://doi.org/10.1056/nejmoa066157 |
[38] | Mushiroda, T., Wattanapokayakit, S., Takahashi, A., Nukiwa, T., Kudoh, S., Ogura, T., et al. (2008) A Genome-Wide Association Study Identifies an Association of a Common Variant in TERT with Susceptibility to Idiopathic Pulmonary Fibrosis. Journal of Medical Genetics, 45, 654-656. https://doi.org/10.1136/jmg.2008.057356 |
[39] | García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., et al. (2016) Autophagy Maintains Stemness by Preventing Senescence. Nature, 529, 37-42. https://doi.org/10.1038/nature16187 |
[40] | Araya, J., Kojima, J., Takasaka, N., Ito, S., Fujii, S., Hara, H., et al. (2013) Insufficient Autophagy in Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 304, L56-L69. https://doi.org/10.1152/ajplung.00213.2012 |
[41] | Bueno, M., Lai, Y., Romero, Y., Brands, J., St. Croix, C.M., Kamga, C., et al. (2014) PINK1 Deficiency Impairs Mitochondrial Homeostasis and Promotes Lung Fibrosis. Journal of Clinical Investigation, 125, 521-538. https://doi.org/10.1172/jci74942 |