|
基于静电纺丝技术制备的MnO纳米颗粒作为高催化活性和优异循环稳定性的Li-O2电池阴极催化剂
|
Abstract:
近年来,过渡金属氧化物已被认为是最有希望代替贵金属作为锂氧(Li-O2)电池阴极催化剂的材料。本文研究了一种由静电纺纤维煅烧后自发形成的MnO纳米颗粒作为Li-O2电池的高效催化剂。物性表征的结果显示成功合成了平均粒径为61.82 nm的MnO纳米颗粒,为立方晶系结构,作为Li-O2电池阴极在500次循环中表现出优异的循环稳定性,首次充电过电位为0.46 V,在500 mA·g?1的高电流密度下实现了1000 h的稳定循环,优于大多数已报道的用于Li-O2电池的MnOx催化剂。
In recent years, transition metal oxides have been considered the most promising materials to replace precious metals as cathode catalysts for lithium-oxygen batteries. This study investigates MnO nanoparticles that spontaneously form after calcining electrospun fibers as an efficient catalyst for lithium-oxygen (Li-O2) batteries. Physical characterization shows that MnO nanoparticles with an average particle size of 61.82 nm and a cubic crystal structure were successfully synthesized. They exhibit excellent cycling stability as a cathode in Li-O2 batteries, enduring over 500 cycles with an initial overpotential of 0.46 V. Concurrent, they also achieve stable cycling for 1000 hours at a high current density of 500 mA·g?1, outperforming most reported catalysts such as MnOx for Li-O2 batteries.
[1] | Cui, Q., Zhang, Y., Ma, S. and Peng, Z. (2015) Li2O2 Oxidation: The Charging Reaction in the Aprotic Li-O2 Batteries. Science Bulletin, 60, 1227-1234. https://doi.org/10.1007/s11434-015-0837-5 |
[2] | Dutta, A., Wong, R.A., Park, W., Yamanaka, K., Ohta, T., Jung, Y., et al. (2018) Nanostructuring One-Dimensional and Amorphous Lithium Peroxide for High Round-Trip Efficiency in Lithium-Oxygen Batteries. Nature Communications, 9, Article No. 680. https://doi.org/10.1038/s41467-017-02727-2 |
[3] | Hong, M., Yang, C., Wong, R.A., Nakao, A., Choi, H.C. and Byon, H.R. (2018) Determining the Facile Routes for Oxygen Evolution Reaction by in Situ Probing of Li-O2 Cells with Conformal Li2O2 Films. Journal of the American Chemical Society, 140, 6190-6193. https://doi.org/10.1021/jacs.8b02003 |
[4] | Tan, P., Shyy, W., Wu, M.C., Huang, Y.Y. and Zhao, T.S. (2016) Carbon Electrode with NiO and RuO2 Nanoparticles Improves the Cycling Life of Non-Aqueous Lithium-Oxygen Batteries. Journal of Power Sources, 326, 303-312. https://doi.org/10.1016/j.jpowsour.2016.07.012 |
[5] | Wu, W., Lu, Y., Xu, J., Li, Y., Wu, C., Jiang, J., et al. (2023) Revealing the Adhesion, Stability, and Electronic Structure of SiC/M (M = Au, Pt) Interface: A First-Principles Study. Vacuum, 213, Article ID: 112143. https://doi.org/10.1016/j.vacuum.2023.112143 |
[6] | Lu, X., Deng, J., Si, W., Sun, X., Liu, X., Liu, B., et al. (2015) High‐Performance Li-O2 Batteries with Trilayered Pd/MnOx/Pd Nanomembranes. Advanced Science, 2, Article ID: 1500113. https://doi.org/10.1002/advs.201500113 |
[7] | Cui, Z.H. and Guo, X.X. (2014) Manganese Monoxide Nanoparticles Adhered to Mesoporous Nitrogen-Doped Carbons for Nonaqueous Lithium-Oxygen Batteries. Journal of Power Sources, 267, 20-25. https://doi.org/10.1016/j.jpowsour.2014.05.075 |
[8] | Kang, S.J., Mori, T., Narizuka, S., Wilcke, W. and Kim, H. (2014) Deactivation of Carbon Electrode for Elimination of Carbon Dioxide Evolution from Rechargeable Lithium-Oxygen Cells. Nature Communications, 5, Article No. 3937. https://doi.org/10.1038/ncomms4937 |
[9] | Kavakli, C., Meini, S., Harzer, G., Tsiouvaras, N., Piana, M., Siebel, A., et al. (2013) Nanosized Carbon‐Supported Manganese Oxide Phases as Lithium-Oxygen Battery Cathode Catalysts. ChemCatChem, 5, 3358-3373. https://doi.org/10.1002/cctc.201300331 |
[10] | Dai, L., Sun, Q., Guo, J., Cheng, J., Xu, X., Guo, H., et al. (2019) Mesoporous Mn2O3 Rods as a Highly Efficient Catalyst for LiO2 Battery. Journal of Power Sources, 435, Article ID: 226833. https://doi.org/10.1016/j.jpowsour.2019.226833 |
[11] | Wei, Z.H., Zhao, T.S., Zhu, X.B. and Tan, P. (2016) MnO2−x Nanosheets on Stainless Steel Felt as a Carbon-and Binder-Free Cathode for Non-Aqueous Lithium-Oxygen Batteries. Journal of Power Sources, 306, 724-732. https://doi.org/10.1016/j.jpowsour.2015.12.095 |
[12] | Yao, W., Yuan, Y., Tan, G., Liu, C., Cheng, M., Yurkiv, V., et al. (2019) Tuning Li2O2 Formation Routes by Facet Engineering of MnO2 Cathode Catalysts. Journal of the American Chemical Society, 141, 12832-12838. https://doi.org/10.1021/jacs.9b05992 |
[13] | Luo, N., Feng, L., Yin, H., Stein, A., Huang, S., Hou, Z., et al. (2022) Li8MnO6: A Novel Cathode Material with Only Anionic Redox. ACS Applied Materials & Interfaces, 14, 29832-29843. https://doi.org/10.1021/acsami.2c06173 |
[14] | Zhang, K., Han, X., Hu, Z., Zhang, X., Tao, Z. and Chen, J. (2015) Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion. Chemical Society Reviews, 44, 699-728. https://doi.org/10.1039/c4cs00218k |
[15] | Cao, Y. and Or, S.W. (2016) Enhanced Cyclability in Rechargeable Li-O2 Batteries Based on Mn3O4 Hollow Nanocage/Ketjenblack Catalytic Air Cathode. IEEE Transactions on Magnetics, 52, 1-4. https://doi.org/10.1109/tmag.2016.2522472 |
[16] | Wei, Z., Zhang, Z., Ren, Y. and Zhao, H. (2021) A Novel Cr2O3/MnO2−x Electrode for Lithium-Oxygen Batteries with Low Charge Voltage and High Energy Efficiency. Frontiers in Chemistry, 9, Article ID: 646218. https://doi.org/10.3389/fchem.2021.646218 |
[17] | Liu, B., Liu, X., Wei, C., Zhou, Y., Zhu, Z., Lei, X., et al. (2023) Constructing Asymmetrical Dual Catalytic Sites in Manganese Oxides Enables Fast and Stable Lithium-Oxygen Catalysis. Journal of Materials Chemistry A, 11, 1188-1198. https://doi.org/10.1039/d2ta07232g |
[18] | Luo, W., Chou, S., Wang, J.-Z., Zhai, Y. and Liu, H. (2015) A Facile Approach to Synthesize Stable CNTs@MnO Electrocatalyst for High Energy Lithium Oxygen Batteries. Scientific Reports, 5, Article No. 8012. https://doi.org/10.1038/srep08012 |
[19] | Kwon, H. and Han, J.W. (2016) Investigation of LiO2 Adsorption on LaB1−xB’xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study. Journal of the Korean Ceramic Society, 53, 306-311. https://doi.org/10.4191/kcers.2016.53.3.306 |
[20] | Hlungwani, D., Ledwaba, R.S. and Ngoepe, P.E. (2022) First-Principles Study on the Effect of Lithiation in Spinel LixMn2O4 (0 ≤ X ≤ 1) Structure: Calibration of CASTEP and ONETEP Simulation Codes. Materials, 15, Article No. 5678. https://doi.org/10.3390/ma15165678 |
[21] | Kang, H.K., Oh, H.J., Kim, J.Y., Kim, H.Y. and Choi, Y.O. (2021) Effect of Process Control Parameters on the Filtration Performance of PAN-CTAB Nanofiber/nanonet Web Combined with Meltblown Nonwoven. Polymers, 13, Article No. 3591. https://doi.org/10.3390/polym13203591 |
[22] | Shang, C., Yang, M., Wang, Z., Li, M., Liu, M., Zhu, J., et al. (2017) Encapsulated MnO in N-Doping Carbon Nanofibers as Efficient ORR Electrocatalysts. Science China Materials, 60, 937-946. https://doi.org/10.1007/s40843-017-9103-1 |
[23] | Zahoor, A., Faizan, R., Elsaid, K., Hashmi, S., Butt, F.A. and Ghouri, Z.K. (2021) Synthesis and Experimental Investigation of δ-MnO2/N-rGO Nanocomposite for Li-O2 Batteries Applications. Chemical Engineering Journal Advances, 7, Article ID: 100115. https://doi.org/10.1016/j.ceja.2021.100115 |
[24] | Kwon, O.S., Kim, T., Lee, J.S., Park, S.J., Park, H., Kang, M., et al. (2012) Fabrication of Graphene Sheets Intercalated with Manganese Oxide/Carbon Nanofibers: Toward High‐Capacity Energy Storage. Small, 9, 248-254. https://doi.org/10.1002/smll.201201754 |
[25] | Cheng, H., Xie, J., Cao, G., Lu, Y., Zheng, D., Jin, Y., et al. (2019) Realizing Discrete Growth of Thin Li2O2 Sheets on Black Phosphorus Quantum Dots-Decorated δ-MnO2 Catalyst for Long-Life Lithium-Oxygen Cells. Energy Storage Materials, 23, 684-692. https://doi.org/10.1016/j.ensm.2019.02.028 |
[26] | Xu, W., Liu, L. and Weng, W. (2021) High-Performance Supercapacitor Based on MnO/Carbon Nanofiber Composite in Extended Potential Windows. Electrochimica Acta, 370, Article ID: 137713. https://doi.org/10.1016/j.electacta.2021.137713 |