全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

哮喘相关生物标志物的研究进展
Advances in Asthma-Related Biomarkers

DOI: 10.12677/acrem.2025.131006, PP. 33-43

Keywords: 哮喘,诊断,生物标志物
Asthma
, Diagnosis, Biomarker

Full-Text   Cite this paper   Add to My Lib

Abstract:

哮喘异质性强,随着对哮喘机制与治疗手段的认识要求提高,现有的哮喘诊断体系亟需随之更新。生物标志物是可以反映生理、病理机制与治疗效果的指标,理想的生物标志物应具有敏感性、特异性,能够提供阳性和阴性预测值,同时测量简单且具有成本效益。目前已有许多着眼于哮喘生物标志物的研究,但尚未获得更多经过验证可供于投入临床的生物标志物。本文就典型与新兴哮喘诊断相关生物标志物的研究进展进行综述。
Asthma is highly heterogeneous, and as the understanding of asthma mechanisms and therapeutic means increases, there is an urgent need to update the existing asthma diagnostic system accordingly. Biomarkers are indicators of physiologic and pathologic mechanisms and therapeutic efficacy. Ideally, biomarkers should be sensitive, specific, providing positive and negative predictive values, and be simple and cost-effective to measure. There have been many studies focusing on asthma biomarkers, but more validated biomarkers are not yet available. This article provides a review of the progress of research on typical and emerging biomarkers relevant to asthma diagnosis.

References

[1]  Rodriguez del Rio, P., Liu, A.H., Borres, M.P., Södergren, E., Iachetti, F. and Casale, T.B. (2022) Asthma and Allergy: Unravelling a Tangled Relationship with a Focus on New Biomarkers and Treatment. International Journal of Molecular Sciences, 23, Article 3881.
https://doi.org/10.3390/ijms23073881
[2]  Martinez, F.D. and Vercelli, D. (2013) Asthma. The Lancet, 382, 1360-1372.
https://doi.org/10.1016/s0140-6736(13)61536-6
[3]  全球哮喘防治创议. 全球哮喘管理和预防策略[Z]. 2023.
[4]  Yang, Y., Jia, M., Ou, Y., Adcock, I.M. and Yao, X. (2021) Mechanisms and Biomarkers of Airway Epithelial Cell Damage in Asthma: A Review. The Clinical Respiratory Journal, 15, 1027-1045.
https://doi.org/10.1111/crj.13407
[5]  Gans, M.D. and Gavrilova, T. (2020) Understanding the Immunology of Asthma: Pathophysiology, Biomarkers, and Treatments for Asthma Endotypes. Paediatric Respiratory Reviews, 36, 118-127.
https://doi.org/10.1016/j.prrv.2019.08.002
[6]  Biomarkers Definitions Working Group (2001) Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clinical Pharmacology and Therapeutics, 69, 89-95.
https://doi.org/10.1067/mcp.2001.113989
[7]  Perlikos, F., Hillas, G. and Loukides, S. (2016) Phenotyping and Endotyping Asthma Based on Biomarkers. Current Topics in Medicinal Chemistry, 16, 1582-1586.
https://doi.org/10.2174/1568026616666150930120803
[8]  Khan, N.S., Rubin, E., McKenna, B., Palowitch, B.L., Sonnenberg, F., Argon, J., et al. (2022) Biomarker Underuse Contributes to an Inability to Phenotype Patients with Severe Uncontrolled Asthma. Allergy and Asthma Proceedings, 43, 383-387.
https://doi.org/10.2500/aap.2022.43.220038
[9]  Goyal, J.P. and Rajvanshi, N. (2023) Periostin: A Novel Biomarker for Asthma. Indian Journal of Pediatrics, 90, 427-428.
https://doi.org/10.1007/s12098-023-04511-1
[10]  Narendra, D., Blixt, J. and Hanania, N.A. (2019) Immunological Biomarkers in Severe Asthma. Seminars in Immunology, 46, Article 101332.
https://doi.org/10.1016/j.smim.2019.101332
[11]  Fitzpatrick, A.M., Chipps, B.E., Holguin, F. and Woodruff, P.G. (2020) T2-“Low” Asthma: Overview and Management Strategies. The Journal of Allergy and Clinical Immunology: In Practice, 8, 452-463.
https://pubmed.ncbi.nlm.nih.gov/32037109/
https://doi.org/10.1016/j.jaip.2019.11.006
[12]  Maspero, J., Adir, Y., Al-Ahmad, M., Celis-Preciado, C.A., Colodenco, F.D., Giavina-Bianchi, P., et al. (2022) Type 2 Inflammation in Asthma and Other Airway Diseases. ERJ Open Research, 8.
http://publications-ersnet-org-s.webvpn.zju.edu.cn:8001/content/erjor/8/3/00576-2021
https://doi.org/10.1183/23120541.00576-2021
[13]  Marone, G., Spadaro, G., Braile, M., Poto, R., Criscuolo, G., Pahima, H., et al. (2019) Tezepelumab: A Novel Biological Therapy for the Treatment of Severe Uncontrolled Asthma. Expert Opinion on Investigational Drugs, 28, 931-940.
https://doi.org/10.1080/13543784.2019.1672657
[14]  Olin, J.T. and Wechsler, M.E. (2014) Asthma: Pathogenesis and Novel Drugs for Treatment. BMJ, 349, g5517-g5517.
https://doi.org/10.1136/bmj.g5517
[15]  Tindemans, I., Serafini, N., Di Santo, J.P. and Hendriks, R.W. (2014) GATA-3 Function in Innate and Adaptive Immunity. Immunity, 41, 191-206.
https://doi.org/10.1016/j.immuni.2014.06.006
[16]  Gauthier, M., Ray, A. and Wenzel, S.E. (2015) Evolving Concepts of Asthma. American Journal of Respiratory and Critical Care Medicine, 192, 660-668.
https://doi.org/10.1164/rccm.201504-0763pp
[17]  McDonnell, J.M., Dhaliwal, B., Sutton, B.J. and Gould, H.J. (2023) IgE, IgE Receptors and Anti-IgE Biologics: Protein Structures and Mechanisms of Action. Annual Review of Immunology, 41, 255-275.
https://doi.org/10.1146/annurev-immunol-061020-053712
[18]  Arroyave, W.D., Rabito, F.A. and Carlson, J.C. (2013) The Relationship between a Specific IgE Level and Asthma Outcomes: Results from the 2005-2006 National Health and Nutrition Examination Survey. The Journal of Allergy and Clinical Immunology: In Practice, 1, 501-508.
https://doi.org/10.1016/j.jaip.2013.06.013
[19]  Naumova, V., Beltyukov, E., Niespodziana, K., Errhalt, P., Valenta, R., Karaulov, A., et al. (2022) Cumulative IgE-Levels Specific for Respiratory Allergens as Biomarker to Predict Efficacy of Anti-IgE-Based Treatment of Severe Asthma. Frontiers in Immunology, 13, Article 941492.
https://doi.org/10.3389/fimmu.2022.941492
[20]  Chang, Y., Lee, T., Huang, C., Chang, P., Chen, Y. and Fu, C. (2021) The Role of Phadiatop Tests and Total Immunoglobulin E Levels in Screening Aeroallergens: A Hospital-Based Cohort Study. Journal of Asthma and Allergy, 14, 135-140.
https://doi.org/10.2147/jaa.s292710
[21]  Roberts, G., Pfaar, O., Akdis, C.A., Ansotegui, I.J., Durham, S.R., Gerth van Wijk, R., et al. (2017) EAACI Guidelines on Allergen Immunotherapy: Allergic Rhinoconjunctivitis. Allergy, 73, 765-798.
https://doi.org/10.1111/all.13317
[22]  Hamilton, R.G. (2016) Monitoring Allergic Patients on Omalizumab with Free and Total Serum IgE Measurements. The Journal of Allergy and Clinical Immunology: In Practice, 4, 366-368.
https://doi.org/10.1016/j.jaip.2015.12.002
[23]  Yuan, Y.L., Zhang, X., Liu, L., Wang, G., Chen-Yu Hsu, A., Huang, D., et al. (2021) Total IgE Variability Is Associated with Future Asthma Exacerbations: A 1-Year Prospective Cohort Study. The Journal of Allergy and Clinical Immunology: In Practice, 9, 2812-2824.
https://doi.org/10.1016/j.jaip.2021.04.065
[24]  Savran, O., Bønnelykke, K. and Ulrik, C.S. (2024) Characteristics of Adults with Severe Asthma in Childhood: A 60-Year Follow-Up Study. CHEST, 166, 676-684.
https://doi.org/10.1016/j.chest.2024.06.005
[25]  Shah, S.P., Grunwell, J., Shih, J., Stephenson, S. and Fitzpatrick, A.M. (2019) Exploring the Utility of Noninvasive Type 2 Inflammatory Markers for Prediction of Severe Asthma Exacerbations in Children and Adolescents. The Journal of Allergy and Clinical Immunology: In Practice, 7, 2624-2633.e2.
https://pubmed.ncbi.nlm.nih.gov/31100552/
https://doi.org/10.1016/j.jaip.2019.04.043
[26]  Chipps, B.E., Jarjour, N., Calhoun, W.J., Iqbal, A., Haselkorn, T., Yang, M., et al. (2021) A Comprehensive Analysis of the Stability of Blood Eosinophil Levels. Annals of the American Thoracic Society, 18, 1978-1987.
https://doi.org/10.1513/annalsats.202010-1249oc
[27]  Fricker, M., Heaney, L.G. and Upham, J.W. (2017) Can Biomarkers Help Us Hit Targets in Difficult‐to‐Treat Asthma? Respirology, 22, 430-442.
https://doi.org/10.1111/resp.13014
[28]  GINA (2024) Global Strategy for Asthma Management and Prevention.
https://ginasthma.org/2024-report/
[29]  Jensen, S.K., Melgaard, M.E., Pedersen, C.T., Yang, L., Vahman, N., Thyssen, J.P., et al. (2023) Limited Clinical Role of Blood Eosinophil Levels in Early Life Atopic Disease: A Mother-Child Cohort Study. Pediatric Allergy and Immunology, 34, e14050.
https://doi.org/10.1111/pai.14050
[30]  Gaillard, E.A., Kuehni, C.E., Turner, S., Goutaki, M., Holden, K.A., de Jong, C.C.M., et al. (2021) European Respiratory Society Clinical Practice Guidelines for the Diagnosis of Asthma in Children Aged 5-16 Years. European Respiratory Journal, 58, Article 2004173.
https://doi.org/10.1183/13993003.04173-2020
[31]  Barański, K. (2024) Predictive Value of Fractional Exhaled Nitric Oxide (FeNO) in the Diagnosis of Asthma for Epidemiological Purposes—An 8-Year Follow-Up Study. Advances in Respiratory Medicine, 92, 36-44.
https://doi.org/10.3390/arm92010006
[32]  Bacharier, L.B., Pavord, I.D., Maspero, J.F., Jackson, D.J., Fiocchi, A.G., Mao, X., et al. (2024) Blood Eosinophils and Fractional Exhaled Nitric Oxide Are Prognostic and Predictive Biomarkers in Childhood Asthma. Journal of Allergy and Clinical Immunology, 154, 101-110.
https://doi.org/10.1016/j.jaci.2023.09.044
[33]  Barry, L.E., O’Neill, C., Butler, C., Chaudhuri, R. and Heaney, L.G. (2023) Cost-Effectiveness of Fractional Exhaled Nitric Oxide Suppression Testing as an Adherence Screening Tool among Patients with Difficult-to-Control Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 11, 1796-1804.e3.
https://doi.org/10.1016/j.jaip.2023.03.008
[34]  Sunde, R.B., Thorsen, J., Skov, F., Hesselberg, L., Kyvsgaard, J., Følsgaard, N.V., et al. (2023) Exhaled Nitric Oxide Is Only an Asthma‐Relevant Biomarker among Children with Allergic Sensitization. Pediatric Allergy and Immunology, 34, e14044.
https://doi.org/10.1111/pai.14044
[35]  Bystrom, J., Amin, K. and Bishop-Bailey, D. (2011) Analysing the Eosinophil Cationic Protein—A Clue to the Function of the Eosinophil Granulocyte. Respiratory Research, 12, Article No. 10.
https://doi.org/10.1186/1465-9921-12-10
[36]  Tang, M., Charbit, A.R., Johansson, M.W., Jarjour, N.N., Denlinger, L.C., Raymond, W.W., et al. (2024) Utility of Eosinophil Peroxidase as a Biomarker of Eosinophilic Inflammation in Asthma. Journal of Allergy and Clinical Immunology, 154, 580-591.e6.
https://doi.org/10.1016/j.jaci.2024.03.023
[37]  Ackerman, S.J. (2024) Sputum Eosinophil Peroxidase: Building a Better Biomarker for Eosinophilic Asthma. Journal of Allergy and Clinical Immunology, 154, 546-548.
https://doi.org/10.1016/j.jaci.2024.07.004
[38]  Kuai, S. and Zhao, P. (2023) Association of EDN Levels in Patients with Asthma and Correlation with Fev1%: A Meta-Analysis. Allergy and Asthma Proceedings, 44, 244-251.
https://doi.org/10.2500/aap.2023.44.230016
[39]  Chakraborty, S., Hammar, K.S., Filiou, A.E., Holmdahl, I., Hoyer, A., Ekoff, H., et al. (2022) Longitudinal Eosinophil‐derived Neurotoxin Measurements and Asthma Development in Preschool Wheezers. Clinical & Experimental Allergy, 52, 1338-1342.
https://doi.org/10.1111/cea.14210
[40]  Rutten, B., Young, S., Rhedin, M., Olsson, M., Kurian, N., Syed, F., et al. (2021) Eosinophil-Derived Neurotoxin: A Biologically and Analytically Attractive Asthma Biomarker. PLOS ONE, 16, e0246627.
https://doi.org/10.1371/journal.pone.0246627
[41]  Malinovschi, A., Rydell, N., Fujisawa, T., Borres, M.P. and Kim, C. (2023) Clinical Potential of Eosinophil-Derived Neurotoxin in Asthma Management. The Journal of Allergy and Clinical Immunology: In Practice, 11, 750-761.
https://doi.org/10.1016/j.jaip.2022.11.046
[42]  An, J., Lee, J., Sim, J.H., Song, W., Kwon, H., Cho, Y.S., et al. (2020) Serum Eosinophil-Derived Neurotoxin Better Reflect Asthma Control Status than Blood Eosinophil Counts. The Journal of Allergy and Clinical Immunology: In Practice, 8, 2681-2688.e1.
https://doi.org/10.1016/j.jaip.2020.03.035
[43]  Malik, A. and Batra, J.K. (2012) Antimicrobial Activity of Human Eosinophil Granule Proteins: Involvement in Host Defence against Pathogens. Critical Reviews in Microbiology, 38, 168-181.
https://doi.org/10.3109/1040841x.2011.645519
[44]  Granger, V., Zerimech, F., Arab, J., Siroux, V., de Nadai, P., Tsicopoulos, A., et al. (2021) Blood Eosinophil Cationic Protein and Eosinophil-Derived Neurotoxin Are Associated with Different Asthma Expression and Evolution in Adults. Thorax, 77, 552-562.
https://doi.org/10.1136/thoraxjnl-2021-217343
[45]  Shah, S.N., Grunwell, J.R., Mohammad, A.F., Stephenson, S.T., Lee, G.B., Vickery, B.P., et al. (2021) Performance of Eosinophil Cationic Protein as a Biomarker in Asthmatic Children. The Journal of Allergy and Clinical Immunology: In Practice, 9, 2761-2769.E2.
https://doi.org/10.1016/j.jaip.2021.02.053
[46]  Carr, T.F., Zeki, A.A. and Kraft, M. (2018) Eosinophilic and Noneosinophilic Asthma. American Journal of Respiratory and Critical Care Medicine, 197, 22-37.
https://doi.org/10.1164/rccm.201611-2232pp
[47]  Cristiane Baldo1,2, D., Gustavo Romaldini1, J., Margaret Menezes Pizzichini3, M., Eduardo D. Cançado1, J., Dellavance2, A. and Stirbulov1, R. (2023) Periostin as an Important Biomarker of Inflammatory Phenotype T2 in Brazilian Asthma Patients. Jornal Brasileiro de Pneumologia, 49, e20220040.
https://doi.org/10.36416/1806-3756/e20220040
[48]  Choudhary, S., Kumar, P., Banerjee, M., Singh, K. and Goyal, J.P. (2023) Relationship of Serum Periostin with Asthma Control in Children: Single Center Experience. Indian Pediatrics, 60, 822-825.
https://doi.org/10.1007/s13312-023-3012-0
[49]  Yang, L., Zhao, Q. and Wang, S. (2020) The Role of Serum Periostin in the Diagnosis of Asthma: A Meta-Analysis. Allergy and Asthma Proceedings, 41, 240-247.
https://doi.org/10.2500/aap.2020.41.200038
[50]  Yavuz, S.T., Bagci, S., Bolat, A., Akin, O. and Ganschow, R. (2021) Association of Serum Periostin Levels with Clinical Features in Children with Asthma. Pediatric Allergy and Immunology, 32, 937-944.
https://doi.org/10.1111/pai.13444
[51]  Kumar, K., Singh, M., Mathew, J.L., Vaidya, P.C. and Verma Attri, S. (2022) Serum Periostin Level in Children with Asthma. Indian Journal of Pediatrics, 90, 438-442.
https://doi.org/10.1007/s12098-022-04282-1
[52]  Buhl, R., Korn, S., Menzies-Gow, A., Aubier, M., Chapman, K.R., Canonica, G.W., et al. (2020) Prospective, Single-Arm, Longitudinal Study of Biomarkers in Real-World Patients with Severe Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 8, 2630-2639.E6.
https://doi.org/10.1016/j.jaip.2020.03.038
[53]  Al‐Shaikhly, T., Murphy, R.C., Lai, Y., Frevert, C.W., Debley, J.S., Ziegler, S.F., et al. (2023) Sputum Periostin Is a Biomarker of Type 2 Inflammation but Not Airway Dysfunction in Asthma. Respirology, 28, 491-494.
https://doi.org/10.1111/resp.14491
[54]  Busby, J., Holweg, C.T.J., Chai, A., Bradding, P., Cai, F., Chaudhuri, R., et al. (2019) Change in Type-2 Biomarkers and Related Cytokines with Prednisolone in Uncontrolled Severe Oral Corticosteroid Dependent Asthmatics: An Interventional Open-Label Study. Thorax, 74, 806-809.
https://doi.org/10.1136/thoraxjnl-2018-212709
[55]  Friend, S.L., Hosier, S., Nelson, A., et al. (1994) A Thymic Stromal Cell Line Supports in vitro Development of Surface IgM+ B Cells and Produces a Novel Growth Factor Affecting B and T Lineage Cells. Experimental Hematology, 22, 321-328.
[56]  Chen, X., Deng, R., Chi, W., Hua, X., Lu, F., Bian, F., et al. (2019) IL‐27 Signaling Deficiency Develops Th17‐Enhanced Th2‐Dominant Inflammation in Murine Allergic Conjunctivitis Model. Allergy, 74, 910-921.
https://doi.org/10.1111/all.13691
[57]  Hong, H., Liao, S., Chen, F., Yang, Q. and Wang, D. (2020) Role of IL‐25, IL‐33, and TSLP in Triggering United Airway Diseases toward Type 2 Inflammation. Allergy, 75, 2794-2804.
https://doi.org/10.1111/all.14526
[58]  Caminati, M., Buhl, R., Corren, J., Hanania, N.A., Kim, H., Korn, S., et al. (2023) Tezepelumab in Patients with Allergic and Eosinophilic Asthma. Allergy, 79, 1134-1145.
https://doi.org/10.1111/all.15986
[59]  Vrsalović, R., Korošec, P., Štefanović, I.M., Bidovec-Stojkovič, U., Čičak, B., Harjaček, M., et al. (2022) Value of Thymic Stromal Lymphopoietin as a Biomarker in Children with Asthma. Respiratory Medicine, 193, Article 106757.
https://doi.org/10.1016/j.rmed.2022.106757
[60]  Fricker, M., McDonald, V.M., Winter, N.A., Baines, K.J., Wark, P.A.B., Simpson, J.L., et al. (2021) Molecular Markers of Type 2 Airway Inflammation Are Similar between Eosinophilic Severe Asthma and Eosinophilic Chronic Obstructive Pulmonary Disease. Allergy, 76, 2079-2089.
https://doi.org/10.1111/all.14741
[61]  Kolmert, J., Gómez, C., Balgoma, D., Sjödin, M., Bood, J., Konradsen, J.R., et al. (2021) Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. American Journal of Respiratory and Critical Care Medicine, 203, 37-53.
https://doi.org/10.1164/rccm.201909-1869oc
[62]  Ricciardolo, F.L.M., Sorbello, V., Folino, A., Gallo, F., Massaglia, G.M., Favatà, G., et al. (2017) Identification of IL-17F/Frequent Exacerbator Endotype in Asthma. Journal of Allergy and Clinical Immunology, 140, 395-406.
https://doi.org/10.1016/j.jaci.2016.10.034
[63]  Samitas, K., Zervas, E. and Gaga, M. (2017) T2-Low Asthma: Current Approach to Diagnosis and Therapy. Current Opinion in Pulmonary Medicine, 23, 48-55.
https://doi.org/10.1097/mcp.0000000000000342
[64]  Hammad, H. and Lambrecht, B.N. (2021) The Basic Immunology of Asthma. Cell, 184, 1469-1485.
https://doi.org/10.1016/j.cell.2021.02.016
[65]  Tliba, O. and Panettieri, R.A. (2019) Paucigranulocytic Asthma: Uncoupling of Airway Obstruction from Inflammation. Journal of Allergy and Clinical Immunology, 143, 1287-1294.
https://doi.org/10.1016/j.jaci.2018.06.008
[66]  Alam, R., Good, J., Rollins, D., Verma, M., Chu, H., Pham, T., et al. (2017) Airway and Serum Biochemical Correlates of Refractory Neutrophilic Asthma. Journal of Allergy and Clinical Immunology, 140, 1004-1014.E13.
https://doi.org/10.1016/j.jaci.2016.12.963
[67]  Grunwell, J.R., Stephenson, S.T., Tirouvanziam, R., Brown, L.A.S., Brown, M.R. and Fitzpatrick, A.M. (2019) Children with Neutrophil-Predominant Severe Asthma Have Proinflammatory Neutrophils with Enhanced Survival and Impaired Clearance. The Journal of Allergy and Clinical Immunology: In Practice, 7, 516-525.E6.
https://doi.org/10.1016/j.jaip.2018.08.024
[68]  Su, M.‐W., Lin, W.‐C., Tsai, C.‐H., Chiang, B.‐L., Yang, Y.‐H., Lin, Y.‐T., et al. (2018) Childhood Asthma Clusters Reveal Neutrophil‐Predominant Phenotype with Distinct Gene Expression. Allergy, 73, 2024-2032.
https://doi.org/10.1111/all.13439
[69]  Seys, S.F., Lokwani, R., Simpson, J.L. and Bullens, D.M.A. (2019) New Insights in Neutrophilic Asthma. Current Opinion in Pulmonary Medicine, 25, 113-120.
https://doi.org/10.1097/mcp.0000000000000543
[70]  Sutherland, T.E. (2018) Chitinase-Like Proteins as Regulators of Innate Immunity and Tissue Repair: Helpful Lessons for Asthma? Biochemical Society Transactions, 46, 141-151.
https://doi.org/10.1042/bst20170108
[71]  Liu, L., Zhang, X., Liu, Y., Zhang, L., Zheng, J., Wang, J., et al. (2019) Chitinase-Like Protein YKL-40 Correlates with Inflammatory Phenotypes, Anti-Asthma Responsiveness and Future Exacerbations. Respiratory Research, 20, Article No. 95.
https://doi.org/10.1186/s12931-019-1051-9
[72]  Guvenir, H., Buyuktiryaki, B., Kulhas Celik, I., Civelek, E., Kilic Suloglu, A., Karaaslan, C., et al. (2020) Can Serum Periostin, YKL‐40, and Osteopontin Levels in Pre‐School Children with Recurrent Wheezing Predict Later Development of Asthma? Pediatric Allergy and Immunology, 32, 77-85.
https://doi.org/10.1111/pai.13329
[73]  Basu, S. (2010) Bioactive Eicosanoids: Role of Prostaglandin F2α and F2-Isoprostanes in Inflammation and Oxidative Stress Related Pathology. Molecules and Cells, 30, 383-392.
https://doi.org/10.1007/s10059-010-0157-1
[74]  Woo, S., Park, H.S., Yang, E., Ban, G. and Park, H. (2024) 8-Iso-Prostaglandin F2α as a Biomarker of Type 2 Low Airway Inflammation and Remodeling in Adult Asthma. Annals of Allergy, Asthma & Immunology, 133, 73-80.E2.
https://doi.org/10.1016/j.anai.2024.04.007
[75]  Rodrigo-Muñoz, J.M., Gil-Martínez, M., Lorente-Sorolla, C., García-Latorre, R., Valverde-Monge, M., Quirce, S., et al. (2022) MiR-144-3p Is a Biomarker Related to Severe Corticosteroid-Dependent Asthma. Frontiers in Immunology, 13, Article 858722.
https://doi.org/10.3389/fimmu.2022.858722
[76]  Xu, L., Yi, M., Tan, Y., Yi, Z. and Zhang, Y. (2020) A Comprehensive Analysis of MicroRNAs as Diagnostic Biomarkers for Asthma. Therapeutic Advances in Respiratory Disease, 14.
https://doi.org/10.1177/1753466620981863
[77]  Vázquez‐Mera, S., Martelo‐Vidal, L., Miguéns‐Suárez, P., Saavedra‐Nieves, P., Arias, P., González‐Fernández, C., et al. (2022) Serum Exosome inflamma‐mirs Are Surrogate Biomarkers for Asthma Phenotype and Severity. Allergy, 78, 141-155.
https://doi.org/10.1111/all.15480
[78]  Alhamdan, F., Greulich, T., Daviaud, C., Marsh, L.M., Pedersen, F., Thölken, C., et al. (2023) Identification of Extracellular Vesicle MicroRNA Signatures Specifically Linked to Inflammatory and Metabolic Mechanisms in Obesity‐associated Low Type‐2 Asthma. Allergy, 78, 2944-2958.
https://doi.org/10.1111/all.15824
[79]  Uguz, A., Berber, Z., Coskun, M., Halide Akbas, S. and Yegin, O. (2005) Mannose‐Binding Lectin Levels in Children with Asthma. Pediatric Allergy and Immunology, 16, 231-235.
https://doi.org/10.1111/j.1399-3038.2005.00258.x
[80]  Borta, S.M., Dumitra, S., Miklos, I., Popetiu, R., Pilat, L., Pușchiță, M., et al. (2020) Clinical Relevance of Plasma Concentrations of MBL in Accordance with IgE Levels in Children Diagnosed with Bronchial Asthma. Medicina, 56, Article 594.
https://doi.org/10.3390/medicina56110594
[81]  Shi, J., Zhu, X., Xie, M., Wang, J., He, Y., Xu, Y., et al. (2016) MBL2 Polymorphisms and the Risk of Asthma. Annals of Allergy, Asthma & Immunology, 117, 417-422.E1.
https://doi.org/10.1016/j.anai.2016.08.001
[82]  Elgendy, A. (2024) Assessment of Tenascin C Levels in the Serum of Patients with Bronchial Asthma. Egyptian Journal of Immunology, 31, 20-29.
https://doi.org/10.55133/eji.310103
[83]  Wang, Z., He, Y., Li, Q., Zhao, Y., Zhang, G. and Luo, Z. (2023) Dysregulation of Iron Homeostasis in Airways Associated with Persistent Preschool Wheezing. Respiratory Research, 24, Article No. 170.
https://doi.org/10.1186/s12931-023-02466-7
[84]  Abboud, M.M., Al-Rawashde, F.A. and Al-Zayadneh, E.M. (2021) Alterations of Serum and Saliva Oxidative Markers in Patients with Bronchial Asthma. Journal of Asthma, 59, 2154-2161.
https://doi.org/10.1080/02770903.2021.2008426
[85]  Shimizu, T. (2009) Lipid Mediators in Health and Disease: Enzymes and Receptors as Therapeutic Targets for the Regulation of Immunity and Inflammation. Annual Review of Pharmacology and Toxicology, 49, 123-150.
https://doi.org/10.1146/annurev.pharmtox.011008.145616
[86]  Wang, S., Tang, K., Lu, Y., Tian, Z., Huang, Z., Wang, M., et al. (2021) Revealing the Role of Glycerophospholipid Metabolism in Asthma through Plasma Lipidomics. Clinica Chimica Acta, 513, 34-42.
https://doi.org/10.1016/j.cca.2020.11.026
[87]  Correnti, S., Preianò, M., Gamboni, F., Stephenson, D., Pelaia, C., Pelaia, G., et al. (2024) An Integrated Metabo-Lipidomics Profile of Induced Sputum for the Identification of Novel Biomarkers in the Differential Diagnosis of Asthma and COPD. Journal of Translational Medicine, 22, Article No. 301.
https://doi.org/10.1186/s12967-024-05100-2
[88]  Gürdeniz, G., Kim, M., Brustad, N., Ernst, M., Russo, F., Stokholm, J., et al. (2022) Furan Fatty Acid Metabolite in Newborns Predicts Risk of Asthma. Allergy, 78, 429-438.
https://doi.org/10.1111/all.15554
[89]  Xu, S., Liu, W., Zhang, L., He, Q., Ma, C., Jiang, J., et al. (2023) High Mobility Group Box 1 Levels as Potential Predictors of Asthma Severity. Chinese Medical Journal, 136, 1606-1608.
https://doi.org/10.1097/cm9.0000000000002491
[90]  Ingram, J.L., Slade, D., Church, T.D., Francisco, D., Heck, K., Sigmon, R.W., et al. (2016) Role of Matrix Metalloproteinases-1 and-2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma. American Journal of Respiratory Cell and Molecular Biology, 54, 41-50.
https://doi.org/10.1165/rcmb.2014-0290oc
[91]  Prabha, A., Lokesh, K.S., Chaya, S.K., Jayaraj, B.S., Malamardi, S., Subbarao, M.V.S.S.T., et al. (2021) Pilot Study Investigating Diagnostic Utility of Serum MMP-1 and Tgf-Β1 in Asthma in ‘real World’ Clinical Practice in India. Journal of Clinical Pathology, 75, 222-225.
https://doi.org/10.1136/jclinpath-2020-206821
[92]  Naveed, S., Clements, D., Jackson, D.J., Philp, C., Billington, C.K., Soomro, I., et al. (2017) Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity. American Journal of Respiratory and Critical Care Medicine, 195, 1000-1009.
https://doi.org/10.1164/rccm.201604-0822oc
[93]  Chen, F., Liang, Y., Zeng, Z., Du, L., Xu, C., Guo, Y., et al. (2022) Association of Increased Basic Salivary Proline‐Rich Protein 1 Levels in Induced Sputum with Type 2‐High Asthma. Immunity, Inflammation and Disease, 10, e602.
https://doi.org/10.1002/iid3.602

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133