全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于差异分析与箱线图的柴油机故障检测算法
A Diesel Engine Fault Detection Algorithm Based on Differential Analysis and Boxplot

DOI: 10.12677/met.2025.141003, PP. 26-40

Keywords: 内燃机车,缸头排温,柴油机,差异分析,箱线图,异常检测
Internal Combustion Locomotive
, Cylinder Head Exhaust Temperature, Diesel Engine, Differential Analysis, Boxplot, Anomaly Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着铁路运输的不断发展,机车的安全性和可靠性变得尤为重要。据此提出了一种基于差异分析 + 箱线图的机车故障检测算法,用于实时监测柴油机运行状态。该算法通过对比机车柴油机12个气缸的缸头排温数据,利用差异分析 + 箱线图的方法识别潜在的故障和异常情况。通过建立差异矩阵,结合箱线图,能够快速定位与发现异常的柴油机气缸,提高故障检测的灵敏度和准确性。实验结果表明,该算法不仅可以有效地识别机车柴油机的故障,还能够提供早期预警,辅助预防性维护,提高机车的可靠性和寿命。与传统的故障检测方法相比,文章提出的差异分析 + 箱线图的方法在实际应用中展现出了显著的优势,为机车系统的安全稳定运行提供了一种新颖且高效的技术手段。
With the continuous development of railway transportation, the safety and reliability of locomotives have become increasingly important. This paper proposes a locomotive fault detection algorithm based on differential analysis combined with boxplot, aimed at real-time monitoring of diesel engine operating conditions. The algorithm compares the cylinder head exhaust temperature data of 12 cylinders of a locomotive diesel engine and uses relative difference analysis/boxplot to identify potential faults and anomalies. By establishing a differential matrix combined with boxplot, the method can quickly locate abnormal cylinders, enhancing the sensitivity and accuracy of fault detection. Experimental results demonstrate that the algorithm can effectively identify faults in locomotive diesel engines, provide early warnings, and assist in preventive maintenance, thereby improving the reliability and lifespan of locomotives. Compared with traditional fault detection methods, the differential analysis and boxplot method proposed in this paper shows significant advantages in practical applications, offering an innovative and efficient technical means for the safe and stable operation of locomotive systems.

References

[1]  蔡宇. 内燃机的原理以及柴油机运行分析[J]. 中国石油和化工标准与质量, 2019(4): 100-101.
[2]  卢博文. 内燃机燃料特性及燃烧模型的应用研究[J]. 内燃机工程, 2022(2): 110-111.
[3]  唐伟, 刘锋华, 王煜. 柴油机气缸压力监测系统标定故障分析[J]. 上海船舶运输科学研究所学报, 2023, 46(5): 30-36.
[4]  郑福印, 李忠厚, 曲鑫, 石晶磊. HXN3型机车16V265H型柴油机动力组结构改进研究[J]. 铁道机车车辆, 2023, 43(3): 139-145.
[5]  张效玮, 王兴芝, 王永安, 全东琴, 申辽. 常见肝癌细胞系的转铁蛋白受体表达差异分析及主动靶向载体效率比较[J]. 科学技术与工程, 2024, 24(11): 4439-4445.
[6]  李大湘, 费国园, 刘颖. 基于特征融合及差异矩阵的行人再识别[J]. 计算机工程与设计, 2020, 41(4): 958-963.
[7]  熊静宜, 梁伟, 张来斌, 雷文章, 万又铖. 基于差异矩阵的石油工程HSE管理差异性分析[J]. 油气田地面工程, 2019, 38(2): 106-110.
[8]  顾国庆, 李晓辉. 基于箱线图异常检测的指数加权平滑预测模型[J]. 计算机与现代化, 2021(1): 28-33.
[9]  赵颖祺, 陈玉虎, 张晰, 张临杰. 一种基于箱线图的SAR图像舰船检测算法研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 130-140.
[10]  金仁成, 李应琛, 马远, 赵继鹏. WSNS中基于箱线图的误差自校正定位算法[J]. 单片机与嵌入式系统应用, 2017, 17(7): 28-33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133