全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电塑性辅助加工的应用及发展综述
Overview of Applications and Development of Electropulse-Assisted Processing

DOI: 10.12677/met.2025.141002, PP. 11-25

Keywords: 电塑性辅助加工,机械加工,电塑性切削,多能场耦合
Electropulse-Assisted Processing
, Machining, Electropulse Cutting, Multi-Field Coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

电塑性辅助加工技术作为新型材料加工方法,具有显著优势和广阔应用前景。文章系统阐述了电塑性辅助加工的理论基础、应用领域、国内外发展现状。在理论基础方面,从纯电塑效应、焦耳热效应、集肤效应和磁压缩效应四个方面进行探讨;在应用领域方面,涵盖了金属拉拔、轧制、车削、焊接、弯曲等加工工艺,展示了其在降低拔制力、提高材料塑性、减少板带边裂、提高表面质量、减小切削力等方面的作用。总之,电塑性辅助加工技术为材料加工领域带来了新的发展方向。
Electropulse-assisted processing technology, as a novel material processing method, has significant advantages and broad application prospects. This paper systematically elaborates on the theoretical basis, application fields, and the current development status, both domestically and internationally, of electropulse-assisted processing. In terms of theoretical foundation, the discussion covers four aspects: pure electropulse effects, Joule heating effects, skin effects, and magnetic compression effects. In the application domain, it includes processing techniques such as metal drawing, rolling, turning, welding, and bending, demonstrating its roles in reducing drawing force, improving material plasticity, minimizing edge cracking in strips, enhancing surface quality, and decreasing cutting forces. In summary, electropulse-assisted processing technology offers a new direction for development in the field of material processing.

References

[1]  Troitskii, O.A. and Likhtman, V.I. (1963) The Anisotropy of the Action of Electron and γ Radiation on the Deformation of Zinc Single Crystals in the Brittle State. Soviet Physics Doklady, 8, 91.
[2]  Troitskii, O.A. (1969) Electro-Mechanical Effect in the Brittle State. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 10, 18.
[3]  Goldman, P.D., Motowidlo, L.R. and Galligan, J.M. (1981) The Absence of an Electroplastic Effect in Lead at 4.2K. Scripta Metallurgica, 15, 353-356.
https://doi.org/10.1016/0036-9748(81)90208-8
[4]  Varma, S.K. and Cornwell, L.R. (1979) The Electroplastic Effect in Aluminum. Scripta Metallurgica, 13, 733-738.
https://doi.org/10.1016/0036-9748(79)90146-7
[5]  Varma, S.K. and Cornwell, L.R. (1980) A Reply to Comments on the Electroplastic Effect in Aluminum. Scripta Metallurgica, 14, 1035-1036.
https://doi.org/10.1016/0036-9748(80)90382-8
[6]  Li, M., Zhang, B., Chen, G., Li, X., Zhang, X. and Li, H. (2023) Temperature Dependence of Electroplastic Effect on Reducing the Ultimate Stress in Ti-6Al-2Zr-1Mo-1V Alloy during Tension. Materials Science and Engineering: A, 863, 144545.
https://doi.org/10.1016/j.msea.2022.144545
[7]  Pakhomov, M.A. and Stolyarov, V.V. (2021) Specific Features of Electroplastic Effect in Mono-and Polycrystalline Aluminum. Metal Science and Heat Treatment, 63, 236-242.
https://doi.org/10.1007/s11041-021-00677-7
[8]  Dimitrov, N.K., Liu, Y. and Horstemeyer, M.F. (2021) Experimental Observation and Modelling of the Electroplastic Effect in Nonferromagnetic Ductile Metals. Experimental Techniques, 45, 735-748.
https://doi.org/10.1007/s40799-021-00443-7
[9]  Adabala, S., Cherukupally, S., Guha, S., D.V, R., Verma, R.K. and N, V.R. (2022) Importance of Machine Compliance to Quantify Electro-Plastic Effect in Electric Pulse Aided Testing: An Experimental and Numerical Study. Journal of Manufacturing Processes, 75, 268-279.
https://doi.org/10.1016/j.jmapro.2021.12.027
[10]  Yi, K., Xiang, S., Zhou, M., Zhang, X. and Du, F. (2023) Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current. Acta Metallurgica Sinica (English Letters), 36, 1511-1522.
https://doi.org/10.1007/s40195-023-01556-1
[11]  Conrad, H. (2000) Electroplasticity in Metals and Ceramics. Materials Science and Engineering: A, 287, 276-287.
https://doi.org/10.1016/s0921-5093(00)00786-3
[12]  Fan, Y., Fan, H. and Hao, Z. (2023) Effect of Pulsed Current on Plastic Deformation of Inconel 718 under High Strain Rate and High Temperature Conditions. Journal of Alloys and Compounds, 943, Article ID: 169150.
https://doi.org/10.1016/j.jallcom.2023.169150
[13]  Molotskii, M. and Fleurov, V. (1995) Magnetic Effects in Electroplasticity of Metals. Physical Review B, 52, 15829-15834.
https://doi.org/10.1103/physrevb.52.15829
[14]  Cui, X., Li, C., Yang, M., Liu, M., Gao, T., Wang, X., et al. (2023) Enhanced Grindability and Mechanism in the Magnetic Traction Nanolubricant Grinding of Ti-6Al-4V. Tribology International, 186, Article ID: 108603.
https://doi.org/10.1016/j.triboint.2023.108603
[15]  Sprecher, A.F., Mannan, S.L. and Conrad, H. (1986) Overview no. 49: On the Mechanisms for the Electroplastic Effect in Metals. Acta Metallurgica, 34, 1145-1162.
https://doi.org/10.1016/0001-6160(86)90001-5
[16]  Liu, J.Y. and Zhang, K.F. (2016) Influence of Electric Current on Superplastic Deformation Mechanism of 5083 Aluminium Alloy. Materials Science and Technology, 32, 540-546.
https://doi.org/10.1179/1743284715y.0000000120
[17]  Guan, L., Tang, G. and Chu, P.K. (2010) Recent Advances and Challenges in Electroplastic Manufacturing Processing of Metals. Journal of Materials Research, 25, 1215-1224.
https://doi.org/10.1557/jmr.2010.0170
[18]  Biesuz, M., Saunders, T., Ke, D., Reece, M.J., Hu, C. and Grasso, S. (2021) A Review of Electromagnetic Processing of Materials (EPM): Heating, Sintering, Joining and Forming. Journal of Materials Science & Technology, 69, 239-272.
https://doi.org/10.1016/j.jmst.2020.06.049
[19]  Okazaki, K., Kagawa, M. and Conrad, H. (1980) An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titatnium. Materials Science and Engineering, 45, 109-116.
https://doi.org/10.1016/0025-5416(80)90216-5
[20]  Ma, Y.R., Yang, H.J., Ben, D.D., Shao, X.H., Tian, Y.Z., Wang, Q., et al. (2020) Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 34, 534-542.
https://doi.org/10.1007/s40195-020-01130-z
[21]  Simonetto, E., Bruschi, S. and Ghiotti, A. (2019) Electroplastic Effect on AA1050 Plastic Flow Behavior in H24 Tempered and Fully Annealed Conditions. Procedia Manufacturing, 34, 83-89.
https://doi.org/10.1016/j.promfg.2019.06.124
[22]  Chicheneva, O.N., Chichenev, N.A., Pashkov, A.N., Gorovaya, T.Y. and Vasiliev, M.V. (2022) Influence of Electroplastic Deformation on the Deformation Resistance of Refractory Metals. Metallurgist, 66, 657-662.
https://doi.org/10.1007/s11015-022-01373-4
[23]  Liu, Y.Y., Zhu, W.C., Deng, W.K., Song, P., Liu, X.M., Zhang, J.H., et al. (2022) Tailoring Phase Composition of a Multielement TiZrAlV Alloy via Electroplastic Rolling. Materials Letters, 326, Article ID: 132982.
https://doi.org/10.1016/j.matlet.2022.132982
[24]  Ao, D., Gao, J., Chu, X., Lin, S. and Lin, J. (2020) Formability and Deformation Mechanism of Ti-6Al-4V Sheet under Electropulsing Assisted Incremental Forming. International Journal of Solids and Structures, 202, 357-367.
https://doi.org/10.1016/j.ijsolstr.2020.06.028
[25]  Yang, L., Zhang, H. and Liu, G. (2023) Performance Analysis of Wide Magnesium Alloy Foil Rolled by Multi-Pass Electric Plastic Rolling. Metals and Materials International, 29, 2783-2794.
https://doi.org/10.1007/s12540-023-01414-w
[26]  Kukudzhanov, K.V. (2022) Modeling of Self-Healing of Microcracks in the Process of Longitudinal Electroplastic Rolling. Journal of Physics: Conference Series, 2231, Article ID: 012022.
https://doi.org/10.1088/1742-6596/2231/1/012022
[27]  Sun, J., Zhang, J., Liu, D., Huang, H. and Yan, M. (2023) Inhibition Behavior of Edge Cracking in the AZ31B Magnesium Alloy Cold Rolling Process with Pulsed Electric Current. Metals, 13, Article 274.
https://doi.org/10.3390/met13020274
[28]  Zhang, C., Xue, H., Xing, S. and Luo, J. (2023) Effect of Electric Field-Assisted Heat Treatment on Microstructure and Phase Transformation of ZrTiAlV Alloy. Metals and Materials International, 29, 2137-2150.
https://doi.org/10.1007/s12540-022-01366-7
[29]  Li, X., Xu, Z., Huang, J., Peng, L. and Guo, P. (2020) Effects of Electropulsing Treatment on the Element Diffusion between Ti6Al4V and Commercially Pure Titanium. Journal of Manufacturing Science and Engineering, 142, Article ID: 051002.
https://doi.org/10.1115/1.4046506
[30]  Xu, Z., Yang, W., Fan, J., Wu, T. and Gao, Z. (2022) Mechanical Behavior and Constitutive Modeling of the Mg-Zn-Y Alloy in an Electrically Assisted Tensile Test. Materials, 15, Article 7203.
https://doi.org/10.3390/ma15207203
[31]  Tang, G., Zheng, M., Zhu, Y., Zhang, J., Fang, W. and Li, Q. (1998) The Application of the Electro-Plastic Technique in the Cold-Drawing of Steel Wires. Journal of Materials Processing Technology, 84, 268-270.
https://doi.org/10.1016/s0924-0136(98)00229-5
[32]  Tang, G., Zhang, J., Zheng, M., Zhang, J., Fang, W. and Li, Q. (2000) Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L. Materials Science and Engineering: A, 281, 263-267.
https://doi.org/10.1016/s0921-5093(99)00708-x
[33]  Tang, G., Zhang, J., Yan, Y., Zhou, H. and Fang, W. (2003) The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire. Journal of Materials Processing Technology, 137, 96-99.
https://doi.org/10.1016/s0924-0136(02)01091-9
[34]  Tang, G.Y., Ding, F., Xu, Z.H. and Jiang, Y.B. (2007) Research on Electroplastic Drawing of Mg Alloy Wire. Nonferrous Metals, 59, 10.
[35]  Wang, S.N. (2009) Effect of Electric Pulses on Drawability and Corrosion Property of AZ31 Magnesium Alloy. Master’s Thesis, Tsinghua University.
[36]  Spitsyn, V.I., Troitskii, O.A., Gusev, E.V. and Kurdiukov, V.D.K. (1974) Electroplastic Deformation of Stainless (18/9) Steel. Izvestiya Akademii Nauk SSSR, 2, 123.
[37]  Spitsyn, V.I., Troitskii, O.A., Gaviish, A.A., Karynkin, V.I., Shaka, G.E., Stashenko, V.I. and Kozyrev, A.S. (1978) X-Ray Diffraction and Mechanical Investigation of Copper after Electroplastic Drawing. Izvestiya Akademii Nauk SSSR, 4, 120.
[38]  Troitskii, O.A., Spitsyn, V.O., Sokolov, N.V., Ryzhkov, V.G. and Dubov, Y.S. (1979) Electroplastic Drawing of Magnetically Hard Steel Wire. Izvestiya Akademii Nauk SSSR, 2, 113.
[39]  Troitskii, O.A., Stashenko, V.I., Sokolov, N.V. and Ryzhkov, V.G. (1977) Electroplastic Drawing of Stainless Steel. Doklady Akademii Nauk SSSR, 237, 1082.
[40]  Troitskii, O.A., Stashenko, V.I. and Ryzhkov, V.G. (1978) Electroplastic Drawing of Steel, Copper and Tungsten. Doklady Akademii Nauk SSSR, 243, 330.
[41]  Bazaykin, V.I., Gromov, V.E., Kuznetsov, V.A. and Peretyatko, V.N. (1991) Mechanics of Electrostimulated Wire Drawing. International Journal of Solids and Structures, 27, 1639-1643.
https://doi.org/10.1016/0020-7683(91)90066-o
[42]  Klimov, K.M. (2007) Alternative Methods of Producing Bars and Wire. Metallurgist, 51, 511-515.
https://doi.org/10.1007/s11015-007-0094-1
[43]  Gromov, V.E., Kozlov, E.V., Zuev, L.B., Tsellermaer, V.Y. and Aponasenkov, O.V. (1994) Defect Structure of Ferrite and Austenite Steels Developed under Electrostimulated Plastic Deformation. International Congress on Bioceramics and the Human Body, 2, 46.
[44]  邹隆勋, 徐栋恺, 李细锋, 等. 脉冲电流对MS1300超高强钢拉伸变形行为的影响[J]. 塑性工程学报, 2022, 29(10): 196-201.
[45]  宋江豪, 杨尚, 王刚, 等. 脉冲电流对AZ31镁合金板材单向拉伸性能的影响[J]. 锻压技术, 2023, 48(12): 25-34.
[46]  霭振球, 闫磊, 董湘怀. AZ31镁合金与DP980高强钢的纯电塑性效应实验研究[J]. 热加工工艺, 2015, 44(4): 31-36.
[47]  时文才, 武川, 周宇杰, 等. 考虑韧性损伤的Ti6554电塑性本构模型建立及应用[J]. 塑性工程学报, 2023, 30(12): 175-183.
[48]  Klimov, K.M., Shnyrev, G.D., Novikov, I.I. and Isaev, A.V. (1975) Electroplastic Rolling of Tungsten and Tungsten-rhenium Wire into Strip of Micro Thickness. Metallbau Russ, 4, 107.
[49]  Spitsyn, V.I., Kopiev, A.V., Ryzhkov, V.G., Sokilov N.V., and Troitskii, O.A. (1977) Flatting Mill for Finest Tungsten Spring Band Using Ultrasound and Electroplastic Effect. Doklady Akademii Nauk, 236, 861.
[50]  Klimov, K.M., Morukhovich, A.M., Glezer, A.M. and Molotilov, B.V. (1981) Rolling of Iron-Cobalt Alloys Which Are Different to Pressure-Form, Using a High Density Electric Current. Izvestiya Akademii Nauk SSSR, 6, 69.
[51]  Klimov, K.M. and Novikov, I.I. (2007) Absence of Strain Hardening Upon Electrostimulated Rolling of Metals under Cold Conditions. Doklady Physics, 52, 359-360.
https://doi.org/10.1134/s1028335807070038
[52]  Xu, Z., Tang, G., Tian, S., Ding, F. and Tian, H. (2007) Research of Electroplastic Rolling of AZ31 Mg Alloy Strip. Journal of Materials Processing Technology, 182, 128-133.
https://doi.org/10.1016/j.jmatprotec.2006.07.019
[53]  Mal’tsev, I.M. (2008) Electroplastic Rolling of Metals with a High-Density Current. Russian Journal of Non-Ferrous Metals, 49, 175-180.
https://doi.org/10.3103/s1067821208030097
[54]  Humphreys, F.J. and Hatherly, M. (1995) Recrystallization and Related Annealing Phenomena. Pergamon Press.
[55]  Guan, L., Tang, G.Y. and Chu, P.K. Microstructure and Texture Development during Single Pass Large Draught Rolling of Mg-3Al-1Zn Magnesium Alloy Sheets by Electroplastic Rolling. Journal of Materials Research. (Submitted)
[56]  郑兴鹏, 唐国翌, 宋国林, 等. 304不锈钢带材电致塑性轧制[J]. 钢铁, 2014, 49(11): 92-96.
[57]  黄焕超, 刘美娟, 孙明, 等. 电塑性轧制V-Ti-Ni氢分离合金的组织与性能[J]. 金属热处理, 2021, 46(3): 153-158.
[58]  徐志超, 熊峰, 杨文举, 等. 稀土镁合金轧制成形研究进展[J/OL]. 河南理工大学学报(自然科学版): 1-20.
http://kns.cnki.net/kcms/detail/41.1384.N.20240909.1331.002.html, 2025-01-08.
[59]  Magargee, J., Morestin, F. and Cao, J. (2013) Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation. Journal of Engineering Materials and Technology, 135, Article ID: 041003.
https://doi.org/10.1115/1.4024394
[60]  姜颢天, 靳刚, 秦娜, 等. 基于电塑性效应的钨合金铣削试验研究[J]. 塑性工程学报, 2022, 29(8): 123-130.
[61]  黄波涛. GH4169高温合金电塑性辅助铣削实验研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2021.
[62]  黄波涛, 高延峰. 电塑性辅助铣削GH4169高温合金的实验研究[J]. 塑性工程学报, 2020, 27(12): 82-87.
[63]  路冬, 聂熹, 舒嵘, 等. TC4钛合金电塑性车削表面质量试验研究[J]. 工具技术, 2017, 51(8): 68-72.
[64]  范会友. 脉冲电流辅助切削GH4169的切削机理研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2023.
[65]  廖鹏飞. 基于电塑性-超声振动耦合效应的钛合金车削实验研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2018.
[66]  廖鹏飞, 路冬, 舒嵘, 等. 基于电塑性-超声振动耦合作用的钛合金车削实验研究[J]. 陕西师范大学学报(自然科学版), 2018, 46(2): 35-39.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133