全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

γ-Fe2O3纳米粒表面油酸的测定及对T1造影的影响
Determination of Oleic Acid on the Surface of γ-Fe2O3 Nanoparticles and Its Effect on Magnetic Resonance T1 Imaging

DOI: 10.12677/md.2025.151010, PP. 67-76

Keywords: γ-Fe2O3,油酸,高效液相色谱法,磁共振成像
γ-Fe2O3
, Oleic Acid, High-Performance Liquid Chromatography, Magnetic Resonance Imaging

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:检测γ-Fe2O3纳米粒表面油酸的残留量,考察油酸残留量对纳米粒磁共振T1造影效果的影响。方法:采用热分解法制备γ-Fe2O3纳米粒,使用mPEG-P取代γ-Fe2O3纳米粒表面的油酸,得到水溶性的γ-Fe2O3-PEG纳米粒,采用高效液相色谱法测定纳米粒表面残留的油酸,并在7T磁共振成像仪下考察油酸残留量与纳米粒T1造影效果的关联。最后,对体外造影效果最优的样品进行了体内磁共振成像测试。结果:建立了油酸的高效液相色谱检测方法,油酸在10~400 μg/mL浓度范围内具有良好的线性关系(r2 = 1),平均回收率为99.86%。通过改变γ-Fe2O3与mPEG-P的投料比,得到γ-Fe2O3-PEG纳米粒表面油酸残留个数分别为100、83、56、33的样品。体外磁共振成像结果表明,油酸残留量较少的纳米粒拥有更好的T1加权成像性能。小鼠体内血管造影显示,本研究制备的γ-Fe2O3-PEG纳米粒与临床使用的钆类造影剂相比,拥有更好的血管成像效果。结论:本研究成果为热分解法制备的氧化铁纳米粒表面油酸的定量分析提供了一种有效的检测方法,以促进该类纳米粒在生物医学领域的应用。
Objective: Detection of residual oleic acid on the surface of γ-Fe2O3 nanoparticles and investigation of its impact on magnetic resonance T1 imaging. Method: We prepared γ-Fe2O3 nanoparticles via thermal decomposition, with mPEG-P replacing the oleic acid on the surface of the nanoparticles to yield water-soluble γ-Fe2O3-PEG nanoparticles. The residual oleic acid on the surface of the nanoparticles was quantified using High-Performance Liquid Chromatography, and the relationship between the amount of residual oleic acid and the T1 contrast effect of the nanoparticles was investigated using a 7T magnetic resonance imaging system. Finally, the vivo magnetic resonance imaging of the sample exhibiting the optimal in vitro contrast effect was conducted. Results: We developed a High-Performance Liquid Chromatography method for the detection of oleic acid, demonstrating a strong linear correlation in the concentration range of 10~400 μg/mL (r2 = 1) with an average recovery rate of 99.86%. By varying the ratio of γ-Fe2O3 to mPEG-P, samples with oleic acid on the surface of γ-Fe2O3-PEG nanoparticles were obtained, with respective counts of 100, 83, 56, and 33. In vitro magnetic resonance imaging demonstrated that nanoparticles with lower residual oleic acid exhibited enhanced T1-weighted imaging performance. In vivo vascular imaging in mice demonstrated that the γ-Fe2O3-PEG nanoparticles prepared in this study provided better imaging results compared to commercially

References

[1]  Li, C., Shan, S., Chen, L., Afshari, M.J., Wang, H., Lu, K., et al. (2024) Using Adaptive Imaging Parameters to Improve Pegylated Ultrasmall Iron Oxide Nanoparticles‐Enhanced Magnetic Resonance Angiography. Advanced Science, 11, e2405719. https://doi.org/10.1002/advs.202405719
[2]  Jeon, M., Halbert, M.V., Stephen, Z.R. and Zhang, M. (2020) Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Advanced Materials, 33, e1906539.
https://doi.org/10.1002/adma.201906539
[3]  García-Soriano, D., Milán-Rois, P., Lafuente-Gómez, N., Rodríguez-Díaz, C., Navío, C., Somoza, Á., et al. (2024) Multicore Iron Oxide Nanoparticles for Magnetic Hyperthermia and Combination Therapy against Cancer Cells. Journal of Colloid and Interface Science, 670, 73-85. https://doi.org/10.1016/j.jcis.2024.05.046
[4]  Rarokar, N., Yadav, S., Saoji, S., Bramhe, P., Agade, R., Gurav, S., et al. (2024) Magnetic Nanosystem a Tool for Targeted Delivery and Diagnostic Application: Current Challenges and Recent Advancement. International Journal of Pharmaceutics: X, 7, Article ID: 100231. https://doi.org/10.1016/j.ijpx.2024.100231
[5]  Dagci, I., Acar, M., Turhan, F., Mavi, A. and Unver, Y. (2024) Extracellular Production of Azurin by Reusable Magnetic Fe3O4 Nanoparticle-Immobilized Pseudomonas Aeruginosa. Journal of Biotechnology, 394, 48-56. https://doi.org/10.1016/j.jbiotec.2024.08.010
[6]  Yang, J., Feng, J., Yang, S., Xu, Y. and Shen, Z. (2023) Exceedingly Small Magnetic Iron Oxide Nanoparticles for t1‐Weighted Magnetic Resonance Imaging and Imaging‐guided Therapy of Tumors. Small, 19, e2302856. https://doi.org/10.1002/smll.202302856
[7]  Levine, D., McDonald, R.J. and Kressel, H.Y. (2018) Gadolinium Retention after Contrast-Enhanced MRI. JAMA, 320, 1853-1854. https://doi.org/10.1001/jama.2018.13362
[8]  Le Fur, M., Moon, B.F., Zhou, I.Y., Zygmont, S., Boice, A., Rotile, N.J., et al. (2023) Gadolinium-Based Contrast Agent Biodistribution and Speciation in Rats. Radiology, 309, e230984. https://doi.org/10.1148/radiol.230984
[9]  Kim, B.H., Lee, N., Kim, H., An, K., Park, Y.I., Choi, Y., et al. (2011) Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution t1 Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 133, 12624-12631. https://doi.org/10.1021/ja203340u
[10]  Suh, M., Park, J.Y., Ko, G.B., Kim, J.Y., Hwang, D.W., Rees, L., et al. (2024) Optimization of Micelle-Encapsulated Extremely Small Sized Iron Oxide Nanoparticles as a T1 Contrast Imaging Agent: Biodistribution and Safety Profile. Journal of Nanobiotechnology, 22, Article No. 419. https://doi.org/10.1186/s12951-024-02699-8
[11]  McKiernan, E.P., Moloney, C., Roy Chaudhuri, T., Clerkin, S., Behan, K., Straubinger, R.M., et al. (2022) Formation of Hydrated PEG Layers on Magnetic Iron Oxide Nanoflowers Shows Internal Magnetisation Dynamics and Generates High In-Vivo Efficacy for MRI and Magnetic Hyperthermia. Acta Biomaterialia, 152, 393-405. https://doi.org/10.1016/j.actbio.2022.08.033
[12]  Ge, J., Li, C., Wang, N., Zhang, R., Afshari, M.J., Chen, C., et al. (2022) Effects of PEG Chain Length on Relaxometric Properties of Iron Oxide Nanoparticles-Based MRI Contrast Agent. Nanomaterials, 12, Article No. 2673. https://doi.org/10.3390/nano12152673
[13]  Xie, J., Liu, G., Eden, H.S., Ai, H. and Chen, X. (2011) Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Accounts of Chemical Research, 44, 883-892. https://doi.org/10.1021/ar200044b
[14]  Sandiford, L., Phinikaridou, A., Protti, A., Meszaros, L.K., Cui, X., Yan, Y., et al. (2012) Bisphosphonate-Anchored Pegylation and Radiolabeling of Superparamagnetic Iron Oxide: Long-Circulating Nanoparticles for in Vivo Multimodal (T1 MRI-SPECT) Imaging. ACS Nano, 7, 500-512. https://doi.org/10.1021/nn3046055
[15]  Zeininger, L., Portilla, L., Halik, M. and Hirsch, A. (2016) Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2 Nanoparticles. ChemistryA European Journal, 22, 13506-13512. https://doi.org/10.1002/chem.201601920
[16]  Davis, K., Cole, B., Ghelardini, M., Powell, B.A. and Mefford, O.T. (2016) Quantitative Measurement of Ligand Exchange with Small-Molecule Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. Langmuir, 32, 13716-13727.
https://doi.org/10.1021/acs.langmuir.6b03644
[17]  Davis, K., Vidmar, M., Khasanov, A., Cole, B., Ghelardini, M., Mayer, J., et al. (2018) The Effect of Post-Synthesis Aging on the Ligand Exchange Activity of Iron Oxide Nanoparticles. Journal of Colloid and Interface Science, 511, 374-382.
https://doi.org/10.1016/j.jcis.2017.09.087
[18]  Jardim, T., Domingues, M.R.M. and Alves, E. (2023) An Overview on Lipids in Nuts and Oily Fruits: Oil Content, Lipid Composition, Health Effects, Lipidomic Fingerprinting and New Biotechnological Applications of Their By-Products. Critical Reviews in Food Science and Nutrition, 64, 9132-9160. https://doi.org/10.1080/10408398.2023.2208666
[19]  Fujiwara, T., Inoue, R., Ohtawa, T. and Tsunoda, M. (2020) Liquid-Chromatographic Methods for Carboxylic Acids in Biological Samples. Molecules, 25, Article No. 4883. https://doi.org/10.3390/molecules25214883
[20]  Yue, X., Xu, Y., Sun, B., Shang, Y., Yu, Z., Hu, Y., et al. (2024) Study on HPLC Fingerprint of Saposhnikovia Divaricata Lipophilic Components and Anti-Aging Effects. Scientific Reports, 14, Article No. 25766. https://doi.org/10.1038/s41598-024-75824-0
[21]  Zhao, X., He, Y., Chen, J., Zhang, J., Chen, L., Wang, B., et al. (2021) Identification and Direct Determination of Fatty Acids Profile in Oleic Acid by HPLC-CAD and MS-IT-TOF. Journal of Pharmaceutical and Biomedical Analysis, 204, Article ID: 114238. https://doi.org/10.1016/j.jpba.2021.114238
[22]  Fu, S., Cai, Z. and Ai, H. (2020) Stimulus‐Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Advanced Healthcare Materials, 10, e2001091. https://doi.org/10.1002/adhm.202001091

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133