全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道菌群及其代谢物与结直肠癌的相关性研究进展
Research Progress on the Correlation between Gut Microbes and Its Metabolites and Colorectal Cancer

DOI: 10.12677/md.2025.151007, PP. 38-45

Keywords: 结直肠癌,肠道菌群,代谢物,益生菌
Colorectal Cancer
, Gut Microbes, Metabolites, Probiotics

Full-Text   Cite this paper   Add to My Lib

Abstract:

结直肠癌是常见癌症也是人类癌症死亡的重要原因之一,其病因与多方面因素相关,其中肠道菌群紊乱与结直肠癌的发生和进展密切相关。肠道菌群能够通过释放多种代谢产物、蛋白质和大分子来与宿主的结肠上皮细胞和免疫细胞相互作用,从而促进肿瘤的发生。而益生菌本身结构及其代谢产物也能分泌多种肿瘤抑制分子。因此本研究对肠道菌群及其代谢物在结直肠癌的发生、防治中的作用进行综述。
Colorectal cancer is a common cancer and one of the important causes of human cancer death. Its etiology is related to many factors, among which gut microbes disturbance is closely related to the occurrence and progression of colorectal cancer. Gut microbes can promote tumor development by releasing a variety of metabolites, proteins, and macromolecules that interact with the host’s colon epithelial cells and immune cells. The structure of probiotics and their metabolites can also secrete a variety of tumor suppressor molecules. Therefore, this study reviewed the role of intestinal flora and its metabolites in the occurrence, prevention, and treatment of colorectal cancer.

References

[1]  Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2016) Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut, 66, 683-691.
https://doi.org/10.1136/gutjnl-2015-310912
[2]  Diao, X., Guo, C., Jin, Y., Li, B., Gao, X., Du, X., et al. (2024) Cancer Situation in China: An Analysis Based on the Global Epidemiological Data Released in 2024. Cancer Communications, 1-20.
https://doi.org/10.1002/cac2.12627
[3]  Dai, Z., Coker, O.O., Nakatsu, G., Wu, W.K.K., Zhao, L., Chen, Z., et al. (2018) Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria across Populations and Universal Bacterial Markers. Microbiome, 6, Article No. 70.
https://doi.org/10.1186/s40168-018-0451-2
[4]  Wong, C.C. and Yu, J. (2023) Gut Microbiota in Colorectal Cancer Development and Therapy. Nature Reviews Clinical Oncology, 20, 429-452.
https://doi.org/10.1038/s41571-023-00766-x
[5]  Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340.
https://doi.org/10.1016/j.cell.2016.01.013
[6]  Wu, H. and Wu, E. (2012) The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes, 3, 4-14.
https://doi.org/10.4161/gmic.19320
[7]  Ley, R.E., Peterson, D.A. and Gordon, J.I. (2006) Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124, 837-848.
https://doi.org/10.1016/j.cell.2006.02.017
[8]  Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352.
https://doi.org/10.1038/nri.2016.42
[9]  Carding, S., Verbeke, K., Vipond, D.T., Corfe, B.M. and Owen, L.J. (2015) Dysbiosis of the Gut Microbiota in Disease. Microbial Ecology in Health & Disease, 26, Article 26191.
https://doi.org/10.3402/mehd.v26.26191
[10]  Sorboni, S.G., Moghaddam, H.S., Jafarzadeh-Esfehani, R. and Soleimanpour, S. (2022) A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 35, e0033820.
https://doi.org/10.1128/cmr.00338-20
[11]  Özçam, M. and Lynch, S.V. (2024) The Gut-Airway Microbiome Axis in Health and Respiratory Diseases. Nature Reviews Microbiology, 22, 492-506.
https://doi.org/10.1038/s41579-024-01048-8
[12]  闫燕羽, 刘维英, 刘茹悦, 等. 肠道微生态与呼吸系统疾病的研究进展[J]. 中国呼吸与危重监护杂志, 2022, 21(1): 66-70.
[13]  Wu, J., Wang, K., Wang, X., Pang, Y. and Jiang, C. (2020) The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein & Cell, 12, 360-373.
https://doi.org/10.1007/s13238-020-00814-7
[14]  Takeuchi, T., Kubota, T., Nakanishi, Y., Tsugawa, H., Suda, W., Kwon, A.T., et al. (2023) Gut Microbial Carbohydrate Metabolism Contributes to Insulin Resistance. Nature, 621, 389-395.
https://doi.org/10.1038/s41586-023-06466-x
[15]  Scott, A.J., Alexander, J.L., Merrifield, C.A., Cunningham, D., Jobin, C., Brown, R., et al. (2019) International Cancer Microbiome Consortium Consensus Statement on the Role of the Human Microbiome in Carcinogenesis. Gut, 68, 1624-1632.
https://doi.org/10.1136/gutjnl-2019-318556
[16]  Wang, X., Fang, Y., Liang, W., Wong, C.C., Qin, H., Gao, Y., et al. (2024) Fusobacterium Nucleatum Facilitates Anti-Pd-1 Therapy in Microsatellite Stable Colorectal Cancer. Cancer Cell, 42, 1729-1746.e8.
https://doi.org/10.1016/j.ccell.2024.08.019
[17]  Long, X., Wong, C.C., Tong, L., Chu, E.S.H., Ho Szeto, C., Go, M.Y.Y., et al. (2019) Peptostreptococcus anaerobius Promotes Colorectal Carcinogenesis and Modulates Tumour Immunity. Nature Microbiology, 4, 2319-2330.
https://doi.org/10.1038/s41564-019-0541-3
[18]  Tahara, T., Yamamoto, E., Suzuki, H., Maruyama, R., Chung, W., Garriga, J., et al. (2014) Fusobacterium in Colonic Flora and Molecular Features of Colorectal Carcinoma. Cancer Research, 74, 1311-1318.
https://doi.org/10.1158/0008-5472.can-13-1865
[19]  Kostic, A.D., Gevers, D., Pedamallu, C.S., Michaud, M., Duke, F., Earl, A.M., et al. (2011) Genomic Analysis Identifies Association of fusobacterium with Colorectal Carcinoma. Genome Research, 22, 292-298.
https://doi.org/10.1101/gr.126573.111
[20]  王昆, 贾银平, 朱攀, 方瑶, 李倩, 唐彬, 李娜, 毛旭虎. 具核梭杆菌诱导的肠上皮细胞Caco-2炎症反应及凋亡[J]. 免疫学杂志, 2015, 31(4): 313-317.
[21]  Thomas, A.M., Manghi, P., Asnicar, F., Pasolli, E., Armanini, F., Zolfo, M., et al. (2019) Metagenomic Analysis of Colorectal Cancer Datasets Identifies Cross-Cohort Microbial Diagnostic Signatures and a Link with Choline Degradation. Nature Medicine, 25, 667-678.
https://doi.org/10.1038/s41591-019-0405-7
[22]  Abed, J., Emgård, J.E.M., Zamir, G., Faroja, M., Almogy, G., Grenov, A., et al. (2016) Fap2 Mediates Fusobacterium Nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-Galnac. Cell Host & Microbe, 20, 215-225.
https://doi.org/10.1016/j.chom.2016.07.006
[23]  Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G. and Han, Y.W. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its Fada Adhesin. Cell Host & Microbe, 14, 195-206.
https://doi.org/10.1016/j.chom.2013.07.012
[24]  Chen, Y., Peng, Y., Yu, J., Chen, T., Wu, Y., Shi, L., et al. (2017) Invasive Fusobacterium Nucleatum Activates Beta-Catenin Signaling in Colorectal Cancer via a TLR4/P-PAK1 Cascade. Oncotarget, 8, 31802-31814.
https://doi.org/10.18632/oncotarget.15992
[25]  Yang, Y., Weng, W., Peng, J., Hong, L., Yang, L., Toiyama, Y., et al. (2017) Fusobacterium Nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-Regulating Expression of Microrna-21. Gastroenterology, 152, 851-866.e24.
https://doi.org/10.1053/j.gastro.2016.11.018
[26]  Kostic, A.D., Chun, E., Robertson, L., Glickman, J.N., Gallini, C.A., Michaud, M., et al. (2013) Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host & Microbe, 14, 207-215.
https://doi.org/10.1016/j.chom.2013.07.007
[27]  Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H.M., Nomburg, J., et al. (2020) Mutational Signature in Colorectal Cancer Caused by Genotoxic Pks+ E. Coli. Nature, 580, 269-273.
https://doi.org/10.1038/s41586-020-2080-8
[28]  Wallenstein, A., Rehm, N., Brinkmann, M., Selle, M., Bossuet-Greif, N., Sauer, D., et al. (2020) Erratum for Wallenstein et al., “ClbR Is the Key Transcriptional Activator of Colibactin Gene Expression in Escherichia coli”. mSphere, 5, e00591-20.
[29]  Berger, H. and Meyer, T.F. (2021) Mechanistic Dissection Unmasks Colibactin as a Prevalent Mutagenic Driver of Cancer. Cancer Cell, 39, 1439-1441.
https://doi.org/10.1016/j.ccell.2021.10.010
[30]  Dziubańska-Kusibab, P.J., Berger, H., Battistini, F., Bouwman, B.A.M., Iftekhar, A., Katainen, R., et al. (2020) Colibactin DNA-Damage Signature Indicates Mutational Impact in Colorectal Cancer. Nature Medicine, 26, 1063-1069.
https://doi.org/10.1038/s41591-020-0908-2
[31]  Iftekhar, A., Berger, H., Bouznad, N., Heuberger, J., Boccellato, F., Dobrindt, U., et al. (2021) Genomic Aberrations after Short-Term Exposure to Colibactin-Producing E. Coli Transform Primary Colon Epithelial Cells. Nature Communications, 12, Article No. 1003.
https://doi.org/10.1038/s41467-021-21162-y
[32]  Moncrief, J.S., Obiso, R., Barroso, L.A., Kling, J.J., Wright, R.L., Van Tassell, R.L., et al. (1995) The Enterotoxin of Bacteroides Fragilis Is a Metalloprotease. Infection and Immunity, 63, 175-181.
https://doi.org/10.1128/iai.63.1.175-181.1995
[33]  Ulger Toprak, N., Yagci, A., Gulluoglu, B.M., Akin, M.L., Demirkalem, P., Celenk, T., et al. (2006) A Possible Role of Bacteroides Fragilis Enterotoxin in the Aetiology of Colorectal Cancer. Clinical Microbiology and Infection, 12, 782-786.
https://doi.org/10.1111/j.1469-0691.2006.01494.x
[34]  Boleij, A., Hechenbleikner, E.M., Goodwin, A.C., Badani, R., Stein, E.M., Lazarev, M.G., et al. (2014) The Bacteroides Fragilis Toxin Gene Is Prevalent in the Colon Mucosa of Colorectal Cancer Patients. Clinical Infectious Diseases, 60, 208-215.
https://doi.org/10.1093/cid/ciu787
[35]  Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L.A. and Feizabadi, M.M. (2020) Enterotoxigenic Bacteroides Fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Frontiers in Cellular and Infection Microbiology, 9, Article 449.
https://doi.org/10.3389/fcimb.2019.00449
[36]  Wagner, V.E., Dey, N., Guruge, J., Hsiao, A., Ahern, P.P., Semenkovich, N.P., et al. (2016) Effects of a Gut Pathobiont in a Gnotobiotic Mouse Model of Childhood Undernutrition. Science Translational Medicine, 8, 1-14.
https://doi.org/10.1126/scitranslmed.aah4669
[37]  Goodwin, A.C., Shields, C.E.D., Wu, S., Huso, D.L., Wu, X., Murray-Stewart, T.R., et al. (2011) Polyamine Catabolism Contributes to Enterotoxigenic Bacteroides Fragilis-Induced Colon Tumorigenesis. Proceedings of the National Academy of Sciences, 108, 15354-15359.
https://doi.org/10.1073/pnas.1010203108
[38]  Wu, S., Morin, P.J., Maouyo, D. and Sears, C.L. (2003) Bacteroides Fragilis Enterotoxin Induces C-MYC Expression and Cellular Proliferation. Gastroenterology, 124, 392-400.
https://doi.org/10.1053/gast.2003.50047
[39]  O’Hagan, H.M., Wang, W., Sen, S., DeStefano Shields, C., Lee, S.S., Zhang, Y.W., et al. (2011) Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1, and Polycomb Members to Promoter CPG Islands. Cancer Cell, 20, 606-619.
https://doi.org/10.1016/j.ccr.2011.09.012
[40]  Yu, J., Feng, Q., Wong, S.H., Zhang, D., Liang, Q.y., Qin, Y., et al. (2015) Metagenomic Analysis of Faecal Microbiome as a Tool Towards Targeted Non-Invasive Biomarkers for Colorectal Cancer. Gut, 66, 70-78.
https://doi.org/10.1136/gutjnl-2015-309800
[41]  Nakatsu, G., Li, X., Zhou, H., Sheng, J., Wong, S.H., Wu, W.K.K., et al. (2015) Gut Mucosal Microbiome across Stages of Colorectal Carcinogenesis. Nature Communications, 6, Article No. 8727.
https://doi.org/10.1038/ncomms9727
[42]  Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., et al. (2014) The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506-514.
https://doi.org/10.1038/nrgastro.2014.66
[43]  Schmitt, M. and Greten, F.R. (2021) The Inflammatory Pathogenesis of Colorectal Cancer. Nature Reviews Immunology, 21, 653-667.
https://doi.org/10.1038/s41577-021-00534-x
[44]  Gamallat, Y., Meyiah, A., Kuugbee, E.D., Hago, A.M., Chiwala, G., Awadasseid, A., et al. (2016) Lactobacillus Rhamnosus Induced Epithelial Cell Apoptosis, Ameliorates Inflammation and Prevents Colon Cancer Development in an Animal Model. Biomedicine & Pharmacotherapy, 83, 536-541.
https://doi.org/10.1016/j.biopha.2016.07.001
[45]  Kuugbee, E.D., Shang, X., Gamallat, Y., Bamba, D., Awadasseid, A., Suliman, M.A., et al. (2016) Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Digestive Diseases and Sciences, 61, 2908-2920.
https://doi.org/10.1007/s10620-016-4238-7
[46]  Do, E., Hwang, S.W., Kim, S., Ryu, Y., Cho, E.A., Chung, E., et al. (2016) Suppression of Colitis-Associated Carcinogenesis through Modulation of IL-6/STAT3 Pathway by Balsalazide and Vsl#3. Journal of Gastroenterology and Hepatology, 31, 1453-1461.
https://doi.org/10.1111/jgh.13280
[47]  Jacouton, E., Chain, F., Sokol, H., Langella, P. and Bermúdez-Humarán, L.G. (2017) Probiotic Strain Lactobacillus Casei BL23 Prevents Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 8, Article 1553.
https://doi.org/10.3389/fimmu.2017.01553
[48]  Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T., et al. (2019) Metagenomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal Cancer. Nature Medicine, 25, 968-976.
https://doi.org/10.1038/s41591-019-0458-7
[49]  Li, Q., Hu, W., Liu, W., Zhao, L., Huang, D., Liu, X., et al. (2021) Streptococcus Thermophilus Inhibits Colorectal Tumorigenesis through Secreting Β-galactosidase. Gastroenterology, 160, 1179-1193.e14.
https://doi.org/10.1053/j.gastro.2020.09.003
[50]  Wang, T., Zheng, J., Dong, S., Ismael, M., Shan, Y., Wang, X., et al. (2022) Lacticaseibacillus Rhamnosus LS8 Ameliorates Azoxymethane/dextran Sulfate Sodium-Induced Colitis-Associated Tumorigenesis in Mice via Regulating Gut Microbiota and Inhibiting Inflammation. Probiotics and Antimicrobial Proteins, 14, 947-959.
https://doi.org/10.1007/s12602-022-09967-9
[51]  Hibberd, A.A., Lyra, A., Ouwehand, A.C., Rolny, P., Lindegren, H., Cedgård, L., et al. (2017) Intestinal Microbiota Is Altered in Patients with Colon Cancer and Modified by Probiotic Intervention. BMJ Open Gastroenterology, 4, e000145.
https://doi.org/10.1136/bmjgast-2017-000145
[52]  Sorbara, M.T. and Pamer, E.G. (2019) Interbacterial Mechanisms of Colonization Resistance and the Strategies Pathogens Use to Overcome Them. Mucosal Immunology, 12, 1-9.
https://doi.org/10.1038/s41385-018-0053-0
[53]  Karimi Ardestani, S., Tafvizi, F. and Tajabadi Ebrahimi, M. (2019) Heat-Killed Probiotic Bacteria Induce Apoptosis of HT-29 Human Colon Adenocarcinoma Cell Line via the Regulation of Bax/Bcl2 and Caspases Pathway. Human & Experimental Toxicology, 38, 1069-1081.
https://doi.org/10.1177/0960327119851255
[54]  Kang, X., Liu, C., Ding, Y., Ni, Y., Ji, F., Lau, H.C.H., et al. (2023) Roseburia intestinalis Generated Butyrate Boosts Anti-PD-1 Efficacy in Colorectal Cancer by Activating Cytotoxic CD8+t Cells. Gut, 72, 2112-2122.
https://doi.org/10.1136/gutjnl-2023-330291
[55]  Bell, H.N., Rebernick, R.J., Goyert, J., Singhal, R., Kuljanin, M., Kerk, S.A., et al. (2022) Reuterin in the Healthy Gut Microbiome Suppresses Colorectal Cancer Growth through Altering Redox Balance. Cancer Cell, 40, 185-200.e6.
https://doi.org/10.1016/j.ccell.2021.12.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133