全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PSO-LSTM模型对上海某院糖尿病患者住院量的预测研究
Prediction Study of Hospitalization Volume in a Hospital in Shanghai Based on PSO-LSTM Model

DOI: 10.12677/orf.2025.151013, PP. 128-137

Keywords: PSO-LSTM模型,统计预测,时间序列分析,住院人次
PSO-LSTM Model
, Statistical Forecasting, Time Series Analysis, Hospitalization Volume

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:当前医疗管理在资源分配和效率提升方面缺乏精确的住院量预测方法,制约了卫生系统的优化。为解决这一问题,本研究提出一种基于粒子群优化的长短期记忆网络(PSO-LSTM)模型,为医疗资源配置提供科学支持。方法:采用2013年至2023上半年上海崇明地区某医院的住院量数据,构建并优化PSO-LSTM模型。PSO算法通过100次迭代对LSTM模型的关键超参数进行全局优化,并与ARIMA、SARIMA和SVR等模型进行对比分析。结果:PSO-LSTM模型在MSE、RMSE、MAE和R2等指标上表现最佳,相较于SVR模型,MSE降低81.7%,R2提高26.2%。结论:研究结果表明,PSO-LSTM模型有效弥补了传统方法的局限性,为精准预测住院量提供了一种科学的解决方案,有效提高医疗资源配置效率,为卫生系统管理决策提供支持。
Objective: The lack of accurate inpatient volume prediction methods in current healthcare management hinders effective resource allocation and system optimization. To address this issue, this study proposes a Particle Swarm Optimization-based Long Short-Term Memory (PSO-LSTM) model to provide scientific support for the allocation of medical resources. Methods: Using inpatient data from a hospital in Chongming, Shanghai, spanning 2013 to the first half of 2023, the PSO-LSTM model was developed and optimized. The PSO algorithm conducted 100 iterations to globally optimize key hyperparameters of the LSTM model. The performance of the proposed model was compared against ARIMA, SARIMA, and SVR models. Results: The PSO-LSTM model demonstrated superior performance across all metrics, including MSE, RMSE, MAE, and R2. Compared to the SVR model, the PSO-LSTM model achieved an 81.7% reduction in MSE and a 26.2% improvement in R2. Conclusion: The results indicate that the PSO-LSTM model effectively addresses the limitations of traditional methods, providing a robust solution for accurate inpatient volume prediction. This model enhances the efficiency of medical resource allocation and supports healthcare system management decisions.

References

[1]  中国政府. 2023年我国卫生健康事业发展统计公报[EB/OL].
https://www.gov.cn/lianbo/bumen/202408/content_6971241.htm, 2024-10-20.
[2]  中国政府. “健康中国2030”规划纲要[EB/OL].
https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm, 2024-10-20.
[3]  中国政府. “十四五”国民健康规划[EB/OL].
https://www.gov.cn/zhengce/content/2022-05/20/content_5691424.htm, 2024-10-20.
[4]  King, Z., Farrington, J., Utley, M., Kung, E., Elkhodair, S., Harris, S., et al. (2022) Machine Learning for Real-Time Aggregated Prediction of Hospital Admission for Emergency Patients. npj Digital Medicine, 5, Article 104.
https://doi.org/10.1038/s41746-022-00649-y
[5]  刘焰, 卢萍萍. 基于移动平均季节指数法的门诊量分析及预测[J]. 医学信息, 2021, 34(23): 156-158.
[6]  陈龙. 南方某省2010~2019年住院人次季节变动趋势分析[J]. 中国医院统计, 2020, 27(4): 375-378.
[7]  廉恒丽, 俞剑琴, 傅映晖. ARIMA与SARIMA模型在医院门诊人次与出院人次预测中的应用[J]. 中国医院统计, 2017, 24(2): 81-84.
[8]  陈文娟, 林建潮. 基于季节ARIMA模型对某三级综合性医院门诊量的预测研究[J]. 中国医院统计, 2024, 31(3): 185-188.
[9]  张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69.
[10]  王淑平, 李敏, 杜敏, 等. ARIMA与LSTM模型在医院出院人次预测中的比较研究[J]. 公共卫生与预防医学, 2021, 32(1): 18-21.
[11]  Hamiane, S., Ghanou, Y., Khalifi, H. and Telmem, M. (2024) Comparative Analysis of LSTM, ARIMA, and Hybrid Models for Forecasting Future GDP. Ingénierie des systèmes d information, 29, 853-861.
https://doi.org/10.18280/isi.290306
[12]  Kumar, G., Singh, U.P. and Jain, S. (2022) An Adaptive Particle Swarm Optimization-Based Hybrid Long Short-Term Memory Model for Stock Price Time Series Forecasting. Soft Computing, 26, 12115-12135.
https://doi.org/10.1007/s00500-022-07451-8
[13]  Duong, N., Nguyen, M., Nguyen, T. and Tran, T. (2023) Application of Seasonal Trend Decomposition Using Loess and Long Short-Term Memory in Peak Load Forecasting Model in Tien Giang. Engineering, Technology & Applied Science Research, 13, 11628-11634.
https://doi.org/10.48084/etasr.6181
[14]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[15]  Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of ICNN’95—International Conference on Neural Networks, Perth, 27 November-1 December 1995, 1942-1948.
https://doi.org/10.1109/icnn.1995.488968
[16]  Jose, R., Syed, F., Thomas, A. and Toma, M. (2024) Cardiovascular Health Management in Diabetic Patients with Machine-Learning-Driven Predictions and Interventions. Applied Sciences, 14, Article 2132.
https://doi.org/10.3390/app14052132
[17]  Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011) Scikit-Learn: Machine Learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.
[18]  李琳, 王哲, 张学良, 等. 基于LSTM深度神经网络的月门诊量预测精度研究[J]. 中国数字医学, 2019, 14(1): 14-17.
[19]  Cansu, T., Kolemen, E., Karahasan, Ö., Bas, E. and Egrioglu, E. (2023) A New Training Algorithm for Long Short-Term Memory Artificial Neural Network Based on Particle Swarm Optimization. Granular Computing, 8, 1645-1658.
https://doi.org/10.1007/s41066-023-00389-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133