全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青少年近视的预防及研究进展
Prevention and Research Progress of Myopia in Adolescents

DOI: 10.12677/acm.2025.152320, PP. 91-99

Keywords: 青少年,近视,预防,研究进展
Adolescents
, Myopia, Prevention, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

近视是一种全球性的屈光不正问题,由于眼轴增长而导致,现已成为重要的公共卫生议题。随着近视患病率的不断上升,其导致的病理后果,如近视黄斑病变和高度近视相关性视神经病变,已成为不可逆性失明的主要原因之一。因此,早期发现和诊断近视对于实施有效的控制策略至关重要。特别是在东亚和东南亚地区,近视患病率显著上升,亟需采取措施降低近视率和减缓其发展为高度近视,因为高度近视是病理性近视的主要危险因素。研究表明,增加户外活动时间是减少儿童近视发展的关键策略。在临床上,可采用多种方法来减缓近视进展,如使用0.01%至0.05%低剂量阿托品滴眼液(尽管存在轻微副作用),佩戴多焦点眼镜、周边近视离焦隐形眼镜,以及夜间佩戴角膜透气隐形眼镜进行角膜塑形术。在选择近视控制措施时,需综合考虑患者的年龄、健康状况和生活方式。这些措施并非互斥,而是可以综合考虑甚至联合研究,为患者提供更全面的近视防控方案。
Myopia, a global refractive error issue caused by axial elongation of the eye, has emerged as a significant public health concern. With the escalating prevalence of myopia, its pathological consequences, such as myopic macular degeneration and high myopia-related optic neuropathy, have become one of the leading causes of irreversible blindness. Consequently, early detection and diagnosis of myopia are crucial for implementing effective control strategies. Particularly in East and Southeast Asia, where the prevalence of myopia has increased dramatically, urgent measures are needed to reduce myopia rates and mitigate its progression to high myopia, which is a major risk factor for pathologic myopia. Studies have shown that increasing outdoor activity time is a key strategy for reducing the development of myopia in children. Clinically, various methods can be employed to slow the progression of myopia, including the use of low-dose atropine eyedrops ranging from 0.01% to 0.05% (despite mild side effects), wearing multifocal glasses, peripheral defocus soft contact lenses, and overnight orthokeratology with gas permeable contact lenses. When selecting myopia control measures, comprehensive consideration of the patient’s age, health status, and lifestyle is necessary. These measures are not mutually exclusive but can be considered comprehensively and even studied in combination to provide patients with a more holistic myopia prevention and control program.

References

[1]  Morgan, I.G., Ohno-Matsui, K. and Saw, S. (2012) Myopia. The Lancet, 379, 1739-1748.
https://doi.org/10.1016/s0140-6736(12)60272-4

[2]  Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042.
https://doi.org/10.1016/j.ophtha.2016.01.006

[3]  Dong, L., Kang, Y.K., Li, Y., Wei, W.B. and Jonas, J.B. (2020) Prevalence and Time Trends of Myopia in Children and Adolescents in China: A Systemic Review and Meta-Analysis. Retina, 40, 399-411.
https://doi.org/10.1097/iae.0000000000002590

[4]  Fang, Y., Yokoi, T., Nagaoka, N., Shinohara, K., Onishi, Y., Ishida, T., et al. (2018) Progression of Myopic Maculopathy during 18-Year Follow-Up. Ophthalmology, 125, 863-877.
https://doi.org/10.1016/j.ophtha.2017.12.005

[5]  Yan, Y.N., Wang, Y.X., Yang, Y., Xu, L., Xu, J., Wang, Q., et al. (2018) Ten-Year Progression of Myopic Maculopathy: The Beijing Eye Study 2001-2011. Ophthalmology, 125, 1253-1263.
https://doi.org/10.1016/j.ophtha.2018.01.035

[6]  Ohno-Matsui, K., Kawasaki, R., Jonas, J.B., Cheung, C.M.G., Saw, S., Verhoeven, V.J.M., et al. (2015) International Photographic Classification and Grading System for Myopic Maculopathy. American Journal of Ophthalmology, 159, 877-883.e7.
https://doi.org/10.1016/j.ajo.2015.01.022

[7]  Wildsoet, C.F., Chia, A., Cho, P., Guggenheim, J.A., Polling, J.R., Read, S., et al. (2019) IMI—Interventions for Controlling Myopia Onset and Progression Report. Investigative Opthalmology & Visual Science, 60, M106-M131.
https://doi.org/10.1167/iovs.18-25958

[8]  Xiong, S., Sankaridurg, P., Naduvilath, T., Zang, J., Zou, H., Zhu, J., et al. (2017) Time Spent in Outdoor Activities in Relation to Myopia Prevention and Control: A Meta‐Analysis and Systematic Review. Acta Ophthalmologica, 95, 551-566.
https://doi.org/10.1111/aos.13403

[9]  Guo, Y., Liu, L., Lv, Y., Tang, P., Feng, Y., Wu, M., et al. (2019) Outdoor Jogging and Myopia Progression in School Children from Rural Beijing: The Beijing Children Eye Study. Translational Vision Science & Technology, 8, 2.
https://doi.org/10.1167/tvst.8.3.2

[10]  Wu, P., Chen, C., Lin, K., Sun, C., Kuo, C., Huang, H., et al. (2018) Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology, 125, 1239-1250.
https://doi.org/10.1016/j.ophtha.2017.12.011

[11]  Li, X., Schaeffel, F., Kohler, K. and Zrenner, E. (1992) Dose-Dependent Effects of 6-Hydroxy Dopamine on Deprivation Myopia, Electroretinograms, and Dopaminergic Amacrine Cells in Chickens. Visual Neuroscience, 9, 483-492.
https://doi.org/10.1017/s0952523800011287

[12]  Schaeffel, F., Hagel, G., Bartmann, M., Kohler, K. and Zrenner, E. (1994) 6-Hydroxy Dopamine Does Not Affect Lens-Induced Refractive Errors but Suppresses Deprivation Myopia. Vision Research, 34, 143-149.
https://doi.org/10.1016/0042-6989(94)90327-1

[13]  Bartmann, M., Schaeffel, F., Hagel, G. and Zrenner, E. (1994) Constant Light Affects Retinal Dopamine Levels and Blocks Deprivation Myopia but Not Lens-Induced Refractive Errors in Chickens. Visual Neuroscience, 11, 199-208.
https://doi.org/10.1017/s0952523800001565

[14]  Zhu, X. and Wallman, J. (2009) Temporal Properties of Compensation for Positive and Negative Spectacle Lenses in Chicks. Investigative Opthalmology & Visual Science, 50, 37-46.
https://doi.org/10.1167/iovs.08-2102

[15]  Ang, M., Flanagan, J.L., Wong, C.W., Müller, A., Davis, A., Keys, D., et al. (2020) Review: Myopia Control Strategies Recommendations from the 2018 WHO/IAPB/BHVI Meeting on Myopia. British Journal of Ophthalmology, 104, 1482-1487.
https://doi.org/10.1136/bjophthalmol-2019-315575

[16]  Shih, Y., Chen, C., Chou, A., Ho, T., Lin, L.L. and Hung, P. (1999) Effects of Different Concentrations of Atropine on Controlling Myopia in Myopic Children. Journal of Ocular Pharmacology and Therapeutics, 15, 85-90.
https://doi.org/10.1089/jop.1999.15.85

[17]  Tong, L., Huang, X.L., Koh, A.L.T., Zhang, X., Tan, D.T.H. and Chua, W. (2009) Atropine for the Treatment of Childhood Myopia: Effect on Myopia Progression after Cessation of Atropine. Ophthalmology, 116, 572-579.
https://doi.org/10.1016/j.ophtha.2008.10.020

[18]  Yi, S., Huang, Y., Yu, S., Chen, X., Yi, H. and Zeng, X. (2015) Therapeutic Effect of Atropine 1% in Children with Low Myopia. Journal of American Association for Pediatric Ophthalmology and Strabismus, 19, 426-429.
https://doi.org/10.1016/j.jaapos.2015.04.006

[19]  Chia, A., Lu, Q. and Tan, D. (2016) Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eye Drops. Ophthalmology, 123, 391-399.
https://doi.org/10.1016/j.ophtha.2015.07.004

[20]  Pineles, S.L., Kraker, R.T., VanderVeen, D.K., Hutchinson, A.K., Galvin, J.A., Wilson, L.B., et al. (2017) Atropine for the Prevention of Myopia Progression in Children: A Report by the American Academy of Ophthalmology. Ophthalmology, 124, 1857-1866.
https://doi.org/10.1016/j.ophtha.2017.05.032

[21]  Wu, P., Chuang, M., Choi, J., Chen, H., Wu, G., Ohno-Matsui, K., et al. (2018) Update in Myopia and Treatment Strategy of Atropine Use in Myopia Control. Eye, 33, 3-13.
https://doi.org/10.1038/s41433-018-0139-7

[22]  Yam, J.C., Li, F.F., Zhang, X., Tang, S.M., Yip, B.H.K., Kam, K.W., et al. (2020) Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report. Ophthalmology, 127, 910-919.
https://doi.org/10.1016/j.ophtha.2019.12.011

[23]  Walline, J.J., Lindsley, K.B., Vedula, S.S., Cotter, S.A., Mutti, D.O., Ng, S.M., et al. (2020) Interventions to Slow Progression of Myopia in Children. Cochrane Database of Systematic Reviews, 2021, CD004916.
https://doi.org/10.1002/14651858.cd004916.pub4

[24]  Logan, N.S. and Wolffsohn, J.S. (2020) Role of Un‐Correction, Under‐Correction and Over‐Correction of Myopia as a Strategy for Slowing Myopic Progression. Clinical and Experimental Optometry, 103, 133-137.
https://doi.org/10.1111/cxo.12978

[25]  Wildsoet, C. and Wallman, J. (1995) Choroidal and Scleral Mechanisms of Compensation for Spectacle Lenses in Chicks. Vision Research, 35, 1175-1194.
https://doi.org/10.1016/0042-6989(94)00233-c

[26]  Nevin, S.T., Schmid, K.L. and Wildsoet, C.F. (1998) Sharp Vision: A Prerequisite for Compensation to Myopic Defocus in the Chick? Current Eye Research, 17, 322-331.
https://doi.org/10.1076/ceyr.17.3.322.5220

[27]  Smith III, E.L. and Hung, L. (1999) The Role of Optical Defocus in Regulating Refractive Development in Infant Monkeys. Vision Research, 39, 1415-1435.
https://doi.org/10.1016/s0042-6989(98)00229-6

[28]  Mutti, D.O., Sinnott, L.T., Reuter, K.S., Walker, M.K., Berntsen, D.A., Jones-Jordan, L.A., et al. (2019) Peripheral Refraction and Eye Lengths in Myopic Children in the Bifocal Lenses in Nearsighted Kids (BLINK) Study. Translational Vision Science & Technology, 8, 17.
https://doi.org/10.1167/tvst.8.2.17

[29]  Sankaridurg, P., Donovan, L., Varnas, S., Ho, A., Chen, X., Martinez, A., et al. (2010) Spectacle Lenses Designed to Reduce Progression of Myopia: 12-Month Results. Optometry and Vision Science, 87, 631-641.
https://doi.org/10.1097/opx.0b013e3181ea19c7

[30]  Hasebe, S., Jun, J. and Varnas, S.R. (2014) Myopia Control with Positively Aspherized Progressive Addition Lenses: A 2-Year, Multicenter, Randomized, Controlled Trial. Investigative Opthalmology & Visual Science, 55, 7177-7188.
https://doi.org/10.1167/iovs.12-11462

[31]  Kanda, H., Oshika, T., Hiraoka, T., Hasebe, S., Ohno-Matsui, K., Ishiko, S., et al. (2018) Effect of Spectacle Lenses Designed to Reduce Relative Peripheral Hyperopia on Myopia Progression in Japanese Children: A 2-Year Multicenter Randomized Controlled Trial. Japanese Journal of Ophthalmology, 62, 537-543.
https://doi.org/10.1007/s10384-018-0616-3

[32]  Sankaridurg, P., Holden, B., Smith, E., Naduvilath, T., Chen, X., de la Jara, P.L., et al. (2011) Decrease in Rate of Myopia Progression with a Contact Lens Designed to Reduce Relative Peripheral Hyperopia: One-Year Results. Investigative Opthalmology & Visual Science, 52, 9362-9367.
https://doi.org/10.1167/iovs.11-7260

[33]  Walline, J.J., Greiner, K.L., McVey, M.E. and Jones-Jordan, L.A. (2013) Multifocal Contact Lens Myopia Control. Optometry and Vision Science, 90, 1207-1214.
https://doi.org/10.1097/opx.0000000000000036

[34]  Sankaridurg, P., Bakaraju, R.C., Naduvilath, T., Chen, X., Weng, R., Tilia, D., et al. (2019) Myopia Control with Novel Central and Peripheral Plus Contact Lenses and Extended Depth of Focus Contact Lenses: 2 Year Results from a Randomised Clinical Trial. Ophthalmic and Physiological Optics, 39, 294-307.
https://doi.org/10.1111/opo.12621

[35]  Chamberlain, P., Peixoto-de-Matos, S.C., Logan, N.S., Ngo, C., Jones, D. and Young, G. (2019) A 3-Year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optometry and Vision Science, 96, 556-567.
https://doi.org/10.1097/opx.0000000000001410

[36]  Walline, J.J., Walker, M.K., Mutti, D.O., Jones-Jordan, L.A., Sinnott, L.T., Giannoni, A.G., et al. (2020) Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children: The BLINK Randomized Clinical Trial. JAMA, 324, 571-580.
https://doi.org/10.1001/jama.2020.10834

[37]  Bressler, N.M. (2020) Reducing the Progression of Myopia. JAMA, 324, 558-559.
https://doi.org/10.1001/jama.2020.10953

[38]  Walline, J.J., Holden, B.A., Bullimore, M.A., Rah, M.J., Asbell, P.A., Barr, J.T., et al. (2005) The Current State of Corneal Reshaping. Eye & Contact Lens: Science & Clinical Practice, 31, 209-214.
https://doi.org/10.1097/01.icl.0000179709.76832.4f

[39]  Nichols, J.J., Marsich, M.M., Nguyen, M., Barr, J.T. and Bullimore, M.A. (2000) Overnight Orthokeratology. Optometry and Vision Science, 77, 252-259.
https://doi.org/10.1097/00006324-200005000-00012

[40]  Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., et al. (2016) Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-Analysis. Ophthalmology, 123, 697-708.
https://doi.org/10.1016/j.ophtha.2015.11.010

[41]  Bullimore, M.A. and Brennan, N.A. (2019) Myopia Control: Why Each Diopter Matters. Optometry and Vision Science, 96, 463-465.
https://doi.org/10.1097/opx.0000000000001367

[42]  Wolffsohn, J.S., Kollbaum, P.S., Berntsen, D.A., Atchison, D.A., Benavente, A., Bradley, A., et al. (2019) IMI—Clinical Myopia Control Trials and Instrumentation Report. Investigative Opthalmology & Visual Science, 60, M132-M160.
https://doi.org/10.1167/iovs.18-25955

[43]  McCullough, S., Adamson, G., Breslin, K.M.M., McClelland, J.F., Doyle, L. and Saunders, K.J. (2020) Axial Growth and Refractive Change in White European Children and Young Adults: Predictive Factors for Myopia. Scientific Reports, 10, Article No. 15189.
https://doi.org/10.1038/s41598-020-72240-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133