全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LangChain与大模型的医疗问答系统研究
Research on Medical Question Answering System Based on LangChain and Large Model

DOI: 10.12677/csa.2025.152031, PP. 33-43

Keywords: LangChain,知识图谱,大模型
LangChain
, Knowledge Graph, Large Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着人工智能技术的迅猛发展,医疗问答系统已成为医疗信息检索和知识获取的重要工具。医疗领域涉及大量医学术语、复杂的疾病症状和治疗方案,传统查询方式难以高效、准确地满足医护人员和患者的信息需求。相比传统国内搜索引擎和原生开源大语言模型(LLMs),基于LangChain的大模型医疗问答系统能够提供更高质量的答案,显著提升医疗知识检索的效率和精准度。因此,本研究提出了一种基于LangChain与大模型的医疗智能问答系统,结合命名实体识别(NER)、图谱查询和对话分析等技术,构建了一个专注于医疗领域的知识图谱及其查询与生成模块。通过设计和优化Prompt提示词,Agent Tool提升了大模型生成更精准、高质量医疗问答的能力。研究结果表明,该系统在医疗问答任务中的表现优异,准确度、方案可行性和上下文相关性等指标显著优于传统LLMs和国内知名大模型。该系统通过与大规模医疗知识图谱的结合,能够深入理解复杂的医疗问题,并提供精准的回答,呈现可视化图谱展示图,更直观地给用户反馈,同时具备较高的数据安全性和可迁移性。
Nowadays, with the rapid development of artificial intelligence technology, medical question answering system has become an important tool for medical information retrieval and knowledge acquisition. The medical field involves a large number of medical terms, complicated disease symptoms and treatment plans, and traditional inquiry methods are difficult to meet the information needs of medical staff and patients efficiently and accurately. Compared with traditional domestic search engines and native open source large language model (LLMs), LangChain-based large model medical question answering system can provide higher quality answers, significantly improving the efficiency and accuracy of medical knowledge retrieval. Therefore, this study proposed a medical intelligent question and answer system based on LangChain and large model, combined with named entity recognition (NER), graph query and dialogue analysis and other technologies, to build a knowledge graph and query and generation module focusing on the medical field. By designing and optimizing Prompt words, Agent Tool improves the ability of large models to generate more accurate and high-quality medical questions and answers. The results show that the system performs well in medical question answering tasks, with significant improvements in accuracy, feasibility, and context relevance are significantly better than traditional LLMs and well-known domestic large models. Through the combination of large-scale medical knowledge graph, the system can deeply understand complex medical questions, provide accurate answers, present a visual map display graph, and give users more intuitive feedback, while having high data security and portability.

References

[1]  蔡振华, 王燕贞, 杨净. 基于LangChain和ChatGLM的高校财务问答系统研究与实现[J]. 现代计算机, 2024, 30(15): 104-110.
[2]  姜嘉伟. 基于LangChain-LLMs框架的智能问答系统的设计与实现[D]: [硕士学位论文]. 延吉: 延边大学, 2024.
[3]  窦凤岐, 胡珊, 李佳隆, 等. 基于LangChain的RAG问答系统设计与实现——以C语言课程问答系统为例[J]. 信息与电脑(理论版), 2024, 36(6): 101-103.
[4]  陈迪欢, 陆希, 张耀峰. 基于LangChain + LLM的招投标领域问答系统研究[J]. 大数据时代, 2024(5): 23-28.
[5]  Vidivelli, S., Ramachandran, M. and Dharunbalaji, A. (2024) Efficiency-driven Custom Chatbot Development: Unleashing LangChain, RAG, and Performance-Optimized LLM Fusion. Computers, Materials & Continua, 80, 2423-2442.
https://doi.org/10.32604/cmc.2024.054360
[6]  Jeong, J., Gil, D., Kim, D. and Jeong, J. (2024) Current Research and Future Directions for Off-Site Construction through LangChain with a Large Language Model. Buildings, 14, Article 2374.
https://doi.org/10.3390/buildings14082374
[7]  Morales-Chan, M., Amado-Salvatierra, H.R., Medina, J.A., Barchino, R., Hernández-Rizzardini, R. and Teixeira, A.M. (2024) Personalized Feedback in Massive Open Online Courses: Harnessing the Power of Langchain and Openai Api. Electronics, 13, Article 1960.
https://doi.org/10.3390/electronics13101960
[8]  Workman, A.D., Rathi, V.K., Lerner, D.K., Palmer, J.N., Adappa, N.D. and Cohen, N.A. (2023) Utility of a Langchain and Openai Gpt‐powered Chatbot Based on the International Consensus Statement on Allergy and Rhinology: Rhinosinusitis. International Forum of Allergy & Rhinology, 14, 1101-1109.
https://doi.org/10.1002/alr.23310
[9]  Haurum, K.R., Ma, R. and Long, W. (2024) Real Estate with AI: An Agent Based on LangChain. Procedia Computer Science, 242, 1082-1088.
https://doi.org/10.1016/j.procs.2024.08.199
[10]  Msv, J. (2023) Building a Q&A App with LangChain and Google PaLM 2. InfoWorld.
[11]  Machlis, S. (2023) Generative AI with LangChain, RStudio, and Just Enough Python. InfoWorld.
[12]  Zhu, J., Liu, D. and Chen, S. (2024) Multiple-Choice Question Generation and Difficulty Calculations Based on Semantic Similarity. Neural Computing and Applications, 1-13.
https://doi.org/10.1007/s00521-024-10671-8
[13]  周泽先, 刘晓静. 基于知识图谱的藏医可视化研究与问诊系统构建[J/OL]. 现代中医药: 1-8.
http://kns.cnki.net/kcms/detail/61.1397.R.20241204.1415.020.html, 2024-12-24.
[14]  Chen, D., Lu, C., Bai, H., Xia, K. and Zheng, M. (2024) Integrating AI with Medical Industry Chain Data: Enhancing Clinical Nutrition Research through Semantic Knowledge Graphs. Frontiers in Digital Health, 6, Article 1439113.
https://doi.org/10.3389/fdgth.2024.1439113
[15]  张君冬, 刘江峰, 王震宇, 等. 用户响应式场景下大模型驱动的AI问答研究: 以医疗分诊为例[J/OL]. 情报理论与实践: 1-13.
http://kns.cnki.net/kcms/detail/11.1762.G3.20241018.1002.002.html, 2024-12-24.
[16]  Zhang, S. and Song, J. (2024) A Chatbot Based Question and Answer System for the Auxiliary Diagnosis of Chronic Diseases Based on Large Language Model. Scientific Reports, 14, Article No. 17118.
https://doi.org/10.1038/s41598-024-67429-4
[17]  Reichenpfader, D., Rösslhuemer, P. and Denecke, K. (2024) Large Language Model-Based Evaluation of Medical Question Answering Systems: Algorithm Development and Case Study. In: Studies in Health Technology and Informatics, IOS Press, 22-27.
https://doi.org/10.3233/shti240006
[18]  Guo, Q., Cao, S. and Yi, Z. (2022) A Medical Question Answering System Using Large Language Models and Knowledge Graphs. International Journal of Intelligent Systems, 37, 8548-8564.
https://doi.org/10.1002/int.22955
[19]  张芊, 陈攀峰, 冯林坤, 等. PeMeBench: 中文儿科医疗问答基准测试方法[J]. 大数据, 2024, 10(5): 28-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133