|
Material Sciences 2025
CDs/TiO2纳米复合材料吸光度依赖的光催化活性研究
|
Abstract:
本文采用水热法合成了具有不同吸光度的碳点(CDs),研究CDs吸光度对CDs/TiO2纳米复合材料光催化活性的影响。利用透射电子显微镜、傅里叶变换红外光谱仪、X射线光电子能谱仪对CDs/TiO2纳米复合材料的结构、形貌和化学组成进行了表征,并在太阳光照射下以Rh B水溶液为模拟污染物,监测CDs/TiO2纳米复合材料对Rh B的降解情况。结果表明,改变CDs的吸收度可以影响TiO2的光催化性能,来自碳核的本征吸收有助于提升光催化活性,而来自表面态的长拖尾吸收不利于光催化。此外,CDs的吸附量可以很大程度上影响染料降解效率。
In this paper, carbon dots (CDs) with different absorbances are synthesized by hydrothermal method, and the effect of the absorbance of CDs on the photocatalytic activity of CDs/TiO2 nanocomposites is studied. The structure, morphology and chemical composition of CDs/TiO2 nanocomposites are characterized by transmission electron microscopy, Fourier transform infrared spectrometer and X-ray photoelectron spectrometer. The degradation of Rh B by CDs/TiO2 nanocomposites is monitored by using Rh B aqueous solution as a simulated pollutant under sunlight irradiation. The results show that changing the absorption of CDs can affect the photocatalytic performance of TiO2. The intrinsic absorption from carbon nuclei can improve photocatalytic activity, but the long-trailing absorption from surface states is not conducive to photocatalysis. In addition, the adsorption amount of CDs can greatly affect the degradation efficiency of dyes.
[1] | Jin, Y., Tang, W., Wang, J., Ren, F., Chen, Z., Sun, Z., et al. (2023) Construction of Biomass Derived Carbon Quantum Dots Modified TiO2 Photocatalysts with Superior Photocatalytic Activity for Methylene Blue Degradation. Journal of Alloys and Compounds, 932, Article 167627. https://doi.org/10.1016/j.jallcom.2022.167627 |
[2] | Lebedev, A., Anariba, F., Tan, J.C., Li, X. and Wu, P. (2018) A Review of Physiochemical and Photocatalytic Properties of Metal Oxides against Escherichia coli. Journal of Photochemistry and Photobiology A: Chemistry, 360, 306-315. https://doi.org/10.1016/j.jphotochem.2018.04.013 |
[3] | Hui, K.C., Ang, W.L., Yahya, W.Z.N. and Sambudi, N.S. (2022) Effects of Nitrogen/Bismuth-Doping on the Photocatalyst Composite of Carbon Dots/Titanium Dioxide Nanoparticles (CDs/TNP) for Enhanced Visible Light-Driven Removal of Diclofenac. Chemosphere, 290, Article 133377. https://doi.org/10.1016/j.chemosphere.2021.133377 |
[4] | Gómez, I.J., Díaz-Sánchez, M., Pizúrová, N., Zajíčková, L., Prashar, S. and Gómez-Ruiz, S. (2023) Crystalline F-Doped Titanium Dioxide Nanoparticles Decorated with Graphene Quantum Dots for Improving the Photodegradation of Water Pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 443, Article 114875. https://doi.org/10.1016/j.jphotochem.2023.114875 |
[5] | Wu, Z., Wang, Y., Sun, L., Mao, Y., Wang, M. and Lin, C. (2014) An Ultrasound-Assisted Deposition of Nio Nanoparticles on TiO2 Nanotube Arrays for Enhanced Photocatalytic Activity. Journal of Materials Chemistry A, 2, 8223-8229. https://doi.org/10.1039/c4ta00850b |
[6] | Li, J., Wu, X. and Liu, S. (2020) Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications. Acta Physico Chimica Sinica, 37, Article 2009038. https://doi.org/10.3866/pku.whxb202009038 |
[7] | Ingram, D.B. and Linic, S. (2011) Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. Journal of the American Chemical Society, 133, 5202-5205. https://doi.org/10.1021/ja200086g |
[8] | Xiao, F., Miao, J., Wang, H., Yang, H., Chen, J. and Liu, B. (2014) Electrochemical Construction of Hierarchically Ordered CdSe-Sensitized TiO2 Nanotube Arrays: Towards Versatile Photoelectrochemical Water Splitting and Photoredox Applications. Nanoscale, 6, 6727-6737. https://doi.org/10.1039/c4nr01380h |
[9] | Zhang, N., Yang, M., Tang, Z. and Xu, Y. (2013) Toward Improving the Graphene-Semiconductor Composite Photoactivity via the Addition of Metal Ions as Generic Interfacial Mediator. ACS Nano, 8, 623-633. https://doi.org/10.1021/nn405242t |
[10] | He, J., Chen, J., Liu, S., Lin, L., Zhang, Y., Xiao, S., et al. (2023) Activated Carbon Modified Titanium Dioxide/Bismuth Trioxide Adsorbent: One-Pot Synthesis, High Removal Efficiency of Organic Pollutants, and Good Recyclability. Journal of Colloid and Interface Science, 648, 1034-1043. https://doi.org/10.1016/j.jcis.2023.05.206 |
[11] | Bokare, A., Chinnusamy, S. and Erogbogbo, F. (2021) TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications. Catalysts, 11, Article 319. https://doi.org/10.3390/catal11030319 |
[12] | Li, W., Ma, Q., Wang, X., Chu, X., Wang, F., Wang, X., et al. (2020) Enhanced Photoresponse and Fast Charge Transfer: Three-Dimensional Macroporous G-C3N4/Go-TiO2 Nanostructure for Hydrogen Evolution. Journal of Materials Chemistry A, 8, 19533-19543. https://doi.org/10.1039/d0ta07178a |
[13] | Zhan, B., Liu, Y., Zhou, W., Li, S., Chen, Z., Stegmaier, T., et al. (2021) Multifunctional 3D Go/G-C3N4/TiO2 Foam for Oil-Water Separation and Dye Adsorption. Applied Surface Science, 541, Article 148638. https://doi.org/10.1016/j.apsusc.2020.148638 |
[14] | Artar, E., Arvas, M.B., Gorduk, O., Gorduk, S. and Sahin, Y. (2023) Facile Synthesis Strategy for Phthalocyanine-Titanium Dioxide/Multi-Walled Carbon Nanotube/poly(3,4-Ethylenedioxythiophene) Ternary Composite Electrodes via One-Step Electrochemical Method for Supercapacitor Applications. Synthetic Metals, 297, Article 117401. https://doi.org/10.1016/j.synthmet.2023.117401 |
[15] | Liu, X., Yang, Y., Li, H., Yang, Z. and Fang, Y. (2021) Visible Light Degradation of Tetracycline Using Oxygen-Rich Titanium Dioxide Nanosheets Decorated by Carbon Quantum Dots. Chemical Engineering Journal, 408, Article 127259. https://doi.org/10.1016/j.cej.2020.127259 |
[16] | Zhang, J. and Yu, S. (2016) Carbon Dots: Large-Scale Synthesis, Sensing and Bioimaging. Materials Today, 19, 382-393. https://doi.org/10.1016/j.mattod.2015.11.008 |
[17] | Sun, X. and Lei, Y. (2017) Fluorescent Carbon Dots and Their Sensing Applications. TrAC Trends in Analytical Chemistry, 89, 163-180. https://doi.org/10.1016/j.trac.2017.02.001 |
[18] | Paulo, S., Palomares, E. and Martinez-Ferrero, E. (2016) Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications. Nanomaterials, 6, Article 157. https://doi.org/10.3390/nano6090157 |
[19] | Sharma, S., Dutta, V., Singh, P., Raizada, P., Rahmani-Sani, A., Hosseini-Bandegharaei, A., et al. (2019) Carbon Quantum Dot Supported Semiconductor Photocatalysts for Efficient Degradation of Organic Pollutants in Water: A Review. Journal of Cleaner Production, 228, 755-769. https://doi.org/10.1016/j.jclepro.2019.04.292 |
[20] | Han, J., Han, Z., Da, X., Yang, Z., Zhang, D., Hong, R., et al. (2021) Preparation and Photocatalytic Activity of Red Light-Emitting Carbon Dots/p25 Heterojunction Photocatalyst with Ultra-Wide Absorption Spectrum. Materials Research Express, 8, Article 025002. https://doi.org/10.1088/2053-1591/abdf81 |
[21] | Mozdbar, A., Nouralishahi, A., Fatemi, S. and Talatori, F.S. (2023) The Impact of Carbon Quantum Dots (CQDs) on the Photocatalytic Activity of TiO2 under UV and Visible Light. Journal of Water Process Engineering, 51, Article 103465. https://doi.org/10.1016/j.jwpe.2022.103465 |
[22] | Qu, A., Xie, H., Xu, X., Zhang, Y., Wen, S. and Cui, Y. (2016) High Quantum Yield Graphene Quantum Dots Decorated TiO2 Nanotubes for Enhancing Photocatalytic Activity. Applied Surface Science, 375, 230-241. https://doi.org/10.1016/j.apsusc.2016.03.077 |
[23] | Sun, X., Li, H., Ou, N., Lyu, B., Gui, B., Tian, S., et al. (2019) Visible-Light Driven TiO2 Photocatalyst Coated with Graphene Quantum Dots of Tunable Nitrogen Doping. Molecules, 24, Article 344. https://doi.org/10.3390/molecules24020344 |
[24] | Rawat, J., Sharma, H. and Dwivedi, C. (2024) Microwave-Assisted Synthesis of Carbon Quantum Dots and Their Integration with TiO2 Nanotubes for Enhanced Photocatalytic Degradation. Diamond and Related Materials, 144, Article 111050. https://doi.org/10.1016/j.diamond.2024.111050 |
[25] | Nouralishahi, A., Mortazavi, Y., Khodadadi, A.A., Choolaei, M., Thompson, L.T. and Horri, B.A. (2019) Characteristics and Performance of Urea Modified Pt-MWCNTs for Electro-Oxidation of Methanol. Applied Surface Science, 467, 335-344. https://doi.org/10.1016/j.apsusc.2018.10.126 |
[26] | Sui, Y., Wu, L., Zhong, S. and Liu, Q. (2019) Carbon Quantum Dots/TiO2 Nanosheets with Dominant (001) Facets for Enhanced Photocatalytic Hydrogen Evolution. Applied Surface Science, 480, 810-816. https://doi.org/10.1016/j.apsusc.2019.03.028 |
[27] | Martins, N.C.T., Ângelo, J., Girão, A.V., Trindade, T., Andrade, L. and Mendes, A. (2016) N-Doped Carbon Quantum Dots/TiO2 Composite with Improved Photocatalytic Activity. Applied Catalysis B: Environmental, 193, 67-74. https://doi.org/10.1016/j.apcatb.2016.04.016 |
[28] | Deng, Y., Chen, M., Chen, G., Zou, W., Zhao, Y., Zhang, H., et al. (2021) Visible-Ultraviolet Upconversion Carbon Quantum Dots for Enhancement of the Photocatalytic Activity of Titanium Dioxide. ACS Omega, 6, 4247-4254. https://doi.org/10.1021/acsomega.0c05182 |
[29] | Sun, M., Qu, S., Ji, W., Jing, P., Li, D., Qin, L., et al. (2015) Towards Efficient Photoinduced Charge Separation in Carbon Nanodots and TiO2 Composites in the Visible Region. Physical Chemistry Chemical Physics, 17, 7966-7971. https://doi.org/10.1039/c5cp00444f |