全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

变系数非线性梁方程的周期解
Periodic Solutions of Nonlinear Beam Equation with x-Dependent Coefficient

DOI: 10.12677/pm.2025.152042, PP. 25-32

Keywords: 非线性梁方程,周期解,Lyapunov中心定理
Nonlinear Beam Equation
, Periodic Solution, Lyapunov Center Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文考虑了具有空间变系数的非线性梁方程的边值问题,关注其时间周期解的存在性。通过推广Lyapunov中心定理,我们证明了当频率满足一个Diophantine型的非共振条件时,在系统的椭圆平衡点附近存在相同频率的时间周期轨。
This paper is concerned with the time-periodic solutions of the boundary value problem of nonlinear beam equations with x-dependent coefficient. By introducing an infinite version of Lyapunov center theorem, we prove the existence of periodic orbits for frequencies satisfy a Diopantine condition.

References

[1]  Eden, A. and Milani, A.J. (1993) Exponential Attractors for Extensible Beam Equations. Nonlinearity, 6, 457-479.
https://doi.org/10.1088/0951-7715/6/3/007
[2]  Wang, H. and Chen, G. (1991) Asymptotic Locations of Eigenfrequencies of Euler-Bernoulli Beam with Nonhomogeneous Structural and Viscous Damping Coefficients. SIAM Journal on Control and Optimization, 29, 347-367.
https://doi.org/10.1137/0329019
[3]  Drábek, P. and Lupo, D. (1986) On Generalized Periodic Solutions of Some Nonlinear Telegraph and Beam Equations. Czechoslovak Mathematical Journal, 36, 434-449.
https://doi.org/10.21136/cmj.1986.102104
[4]  Fečkan, M. (1999) Free Vibrations of Beams on Bearings with Nonlinear Elastic Responses. Journal of Differential Equations, 154, 55-72.
https://doi.org/10.1006/jdeq.1998.3561
[5]  Lee, C. (2000) Periodic Solutions of Beam Equations with Symmetry. Nonlinear Analysis: Theory, Methods & Applications, 42, 631-650.
https://doi.org/10.1016/s0362-546x(99)00119-4
[6]  Bambusi, D. (2000) Lyapunov Center Theorem for Some Nonlinear PDE’s: A Simple Proof. Annali della Scuola Normale Superi-ore di Pisa-Classe di Scienze, 29, 823-837.
[7]  Geng, J. and You, J. (2003) KAM Tori of Hamiltonian Perturbations of 1D Linear Beam Equations. Journal of Mathematical Analysis and Applications, 277, 104-121.
https://doi.org/10.1016/s0022-247x(02)00505-x
[8]  Geng, J. and You, J. (2006) KAM Tori for Higher Dimensional Beam Equations with Constant Potentials. Nonlinearity, 19, 2405-2423.
https://doi.org/10.1088/0951-7715/19/10/007
[9]  Liang, Z. and Geng, J. (2006) Quasi-Periodic Solutions for 1D Resonant Beam Equation. Communications on Pure & Applied Analysis, 5, 839-853.
https://doi.org/10.3934/cpaa.2006.5.839
[10]  Niu, H. and Geng, J. (2007) Almost Periodic Solutions for a Class of Higher-Dimensional Beam Equations. Nonlinearity, 20, 2499-2517.
https://doi.org/10.1088/0951-7715/20/11/003
[11]  Eliasson, L.H., Grébert, B. and Kuksin, S.B. (2016) KAM for the Nonlinear Beam Equation. Geometric and Functional Analysis, 26, 1588-1715.
https://doi.org/10.1007/s00039-016-0390-7
[12]  Chen, B., Gao, Y., Jiang, S. and Li, Y. (2018) Quasi-Periodic Solutions to Nonlinear Beam Equations on Compact Lie Groups with a Multiplicative Potential. Journal of Differential Equations, 264, 6959-6993.
https://doi.org/10.1016/j.jde.2018.02.005
[13]  Chen, B., Gao, Y. and Nieto, J.J. (2021) Quasi‐Periodic Traveling Waves for a Class of Damped Beams on Rectangular Tori. Mathematical Methods in the Applied Sciences, 45, 1879-1903.
https://doi.org/10.1002/mma.7895
[14]  Barbu, V. and Pavel, N. (1997) Periodic Solutions to Nonlinear One Dimensional Wave Equation with X-Dependent Coefficients. Transactions of the American Mathematical Society, 349, 2035-2048.
https://doi.org/10.1090/s0002-9947-97-01714-5
[15]  Ji, S. and Li, Y. (2010) Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation. Archive for Rational Mechanics and Analysis, 199, 435-451.
https://doi.org/10.1007/s00205-010-0328-4
[16]  Rudakov, I.A. (2004) Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients. Mathematical Notes, 76, 395-406.
https://doi.org/10.1023/b:matn.0000043467.04680.1d
[17]  Baldi, P. and Berti, M. (2008) Forced Vibrations of a Nonhomogeneous String. SIAM Journal on Mathematical Analysis, 40, 382-412.
https://doi.org/10.1137/060665038

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133