|
Pure Mathematics 2025
变系数非线性梁方程的周期解
|
Abstract:
本文考虑了具有空间变系数的非线性梁方程的边值问题,关注其时间周期解的存在性。通过推广Lyapunov中心定理,我们证明了当频率满足一个Diophantine型的非共振条件时,在系统的椭圆平衡点附近存在相同频率的时间周期轨。
This paper is concerned with the time-periodic solutions of the boundary value problem of nonlinear beam equations with x-dependent coefficient. By introducing an infinite version of Lyapunov center theorem, we prove the existence of periodic orbits for frequencies satisfy a Diopantine condition.
[1] | Eden, A. and Milani, A.J. (1993) Exponential Attractors for Extensible Beam Equations. Nonlinearity, 6, 457-479. https://doi.org/10.1088/0951-7715/6/3/007 |
[2] | Wang, H. and Chen, G. (1991) Asymptotic Locations of Eigenfrequencies of Euler-Bernoulli Beam with Nonhomogeneous Structural and Viscous Damping Coefficients. SIAM Journal on Control and Optimization, 29, 347-367. https://doi.org/10.1137/0329019 |
[3] | Drábek, P. and Lupo, D. (1986) On Generalized Periodic Solutions of Some Nonlinear Telegraph and Beam Equations. Czechoslovak Mathematical Journal, 36, 434-449. https://doi.org/10.21136/cmj.1986.102104 |
[4] | Fečkan, M. (1999) Free Vibrations of Beams on Bearings with Nonlinear Elastic Responses. Journal of Differential Equations, 154, 55-72. https://doi.org/10.1006/jdeq.1998.3561 |
[5] | Lee, C. (2000) Periodic Solutions of Beam Equations with Symmetry. Nonlinear Analysis: Theory, Methods & Applications, 42, 631-650. https://doi.org/10.1016/s0362-546x(99)00119-4 |
[6] | Bambusi, D. (2000) Lyapunov Center Theorem for Some Nonlinear PDE’s: A Simple Proof. Annali della Scuola Normale Superi-ore di Pisa-Classe di Scienze, 29, 823-837. |
[7] | Geng, J. and You, J. (2003) KAM Tori of Hamiltonian Perturbations of 1D Linear Beam Equations. Journal of Mathematical Analysis and Applications, 277, 104-121. https://doi.org/10.1016/s0022-247x(02)00505-x |
[8] | Geng, J. and You, J. (2006) KAM Tori for Higher Dimensional Beam Equations with Constant Potentials. Nonlinearity, 19, 2405-2423. https://doi.org/10.1088/0951-7715/19/10/007 |
[9] | Liang, Z. and Geng, J. (2006) Quasi-Periodic Solutions for 1D Resonant Beam Equation. Communications on Pure & Applied Analysis, 5, 839-853. https://doi.org/10.3934/cpaa.2006.5.839 |
[10] | Niu, H. and Geng, J. (2007) Almost Periodic Solutions for a Class of Higher-Dimensional Beam Equations. Nonlinearity, 20, 2499-2517. https://doi.org/10.1088/0951-7715/20/11/003 |
[11] | Eliasson, L.H., Grébert, B. and Kuksin, S.B. (2016) KAM for the Nonlinear Beam Equation. Geometric and Functional Analysis, 26, 1588-1715. https://doi.org/10.1007/s00039-016-0390-7 |
[12] | Chen, B., Gao, Y., Jiang, S. and Li, Y. (2018) Quasi-Periodic Solutions to Nonlinear Beam Equations on Compact Lie Groups with a Multiplicative Potential. Journal of Differential Equations, 264, 6959-6993. https://doi.org/10.1016/j.jde.2018.02.005 |
[13] | Chen, B., Gao, Y. and Nieto, J.J. (2021) Quasi‐Periodic Traveling Waves for a Class of Damped Beams on Rectangular Tori. Mathematical Methods in the Applied Sciences, 45, 1879-1903. https://doi.org/10.1002/mma.7895 |
[14] | Barbu, V. and Pavel, N. (1997) Periodic Solutions to Nonlinear One Dimensional Wave Equation with X-Dependent Coefficients. Transactions of the American Mathematical Society, 349, 2035-2048. https://doi.org/10.1090/s0002-9947-97-01714-5 |
[15] | Ji, S. and Li, Y. (2010) Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation. Archive for Rational Mechanics and Analysis, 199, 435-451. https://doi.org/10.1007/s00205-010-0328-4 |
[16] | Rudakov, I.A. (2004) Periodic Solutions of a Nonlinear Wave Equation with Nonconstant Coefficients. Mathematical Notes, 76, 395-406. https://doi.org/10.1023/b:matn.0000043467.04680.1d |
[17] | Baldi, P. and Berti, M. (2008) Forced Vibrations of a Nonhomogeneous String. SIAM Journal on Mathematical Analysis, 40, 382-412. https://doi.org/10.1137/060665038 |