全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mathematical Model of the Tapered Cantilever Beam Based on the Geometrically Exact Beam Theory

DOI: 10.4236/jamp.2025.132027, PP. 490-505

Keywords: Geometrically Exact Beam Theory, The Tapered Cantilever Beam, Natural Frequency

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on the geometrically exact beam theory, the mathematical model of the tapered cantilever beam is built, and analysis of the structures under load is completed. With the stress-strain relationship of geometrically exact beam theory, and the principle of virtual displacement and D’Alembert principle, the virtual work balance equation of the tapered cantilever beam element is derived. The internal force, external force, and inertial force virtual work of the beam element is discretized by weak form quadrature element method. The numerical results show the variation of the natural frequency of the beam with the taper when the tapered cantilever beam is not subjected to the load and the free end is subjected to the concentrated load and bending moment.

References

[1]  Todorovska, M.I., Girmay, E.A., Wang, F. and Rahmani, M. (2021) Wave Propagation in a Doubly Tapered Shear Beam: Model and Application to a Pyramid‐Shaped Skyscraper. Earthquake Engineering & Structural Dynamics, 51, 764-792.
https://doi.org/10.1002/eqe.3590
[2]  Gugulothu, S., Kumar, G., Kundu, S., Nemade, H.B. and Trivedi, G. (2017) Design of a Next Generation Framework for MEMS Devices. 2017 Devices for Integrated Circuit (DevIC), Kalyani, 23-24 March 2017, 546-550.
https://doi.org/10.1109/devic.2017.8074010
[3]  Campos, L.M.B.C. and Marta, A.C. (2021) On the Vibrations of Pyramidal Beams with Rectangular Cross-Section and Application to Unswept Wings. The Quarterly Journal of Mechanics and Applied Mathematics, 74, 1-31.
https://doi.org/10.1093/qjmam/hbaa017
[4]  Wagner, H. (1965) Large-Amplitude Free Vibrations of a Beam. Journal of Applied Mechanics, 32, 887-892.
https://doi.org/10.1115/1.3627331
[5]  Mabie, H.H. and Rogers, C.B. (1972) Transverse Vibrations of Double-Tapered Cantilever Beams. The Journal of the Acoustical Society of America, 51, 1771-1774.
https://doi.org/10.1121/1.1913028
[6]  Nageswara Rao, B. and Venkateswara Rao, G. (1988) Large Amplitude Vibrations of a Tapered Cantilever Beam. Journal of Sound and Vibration, 127, 173-178.
https://doi.org/10.1016/0022-460x(88)90357-4
[7]  Abdel-Jaber, M.S., Al-Qaisia, A.A., Abdel-Jaber, M. and Beale, R.G. (2008) Nonlinear Natural Frequencies of an Elastically Restrained Tapered Beam. Journal of Sound and Vibration, 313, 772-783.
https://doi.org/10.1016/j.jsv.2007.11.050
[8]  Abdel-Jaber, M., Al-Qaisia, A.A. and Abdel-Jaber, M.S. (2009) Nonlinear Natural Frequencies of a Cantilever with Variable Cross-Section Beam. Advanced Steel Construction, 5, 259-272.
[9]  Al-Raheimy, N.H. (2013) Transverse Free Vibrations of Tapered Cantilever Beam. The Iraqi Journal for Mechanical and Material Engineering, 13, 254-269.
[10]  Wang, C.Y. (2012) Vibration of a Tapered Cantilever of Constant Thickness and Linearly Tapered Width. Archive of Applied Mechanics, 83, 171-176.
https://doi.org/10.1007/s00419-012-0637-1
[11]  Baghani, M., Mazaheri, H. and Salarieh, H. (2014) Analysis of Large Amplitude Free Vibrations of Clamped Tapered Beams on a Nonlinear Elastic Foundation. Applied Mathematical Modelling, 38, 1176-1186.
https://doi.org/10.1016/j.apm.2013.06.040
[12]  Keshmiri, A., Wu, N. and Wang, Q. (2018) Free Vibration Analysis of a Nonlinearly Tapered Cone Beam by Adomian Decomposition Method. International Journal of Structural Stability and Dynamics, 18, Article ID: 1850101.
https://doi.org/10.1142/s0219455418501018
[13]  Bayat, M., Pakar, I. and Bayat, M. (2011) Analytical Study on the Vibration Frequencies of Tapered Beams. Latin American Journal of Solids and Structures, 8, 149-162.
https://doi.org/10.1590/s1679-78252011000200003
[14]  Sedighi, H.M., Shirazi, K.H. and Noghrehabadi, A. (2012) Application of Recent Powerful Analytical Approaches on the Non-Linear Vibration of Cantilever Beams. International Journal of Nonlinear Sciences and Numerical Simulation, 13, 487-494.
https://doi.org/10.1515/ijnsns-2012-0030
[15]  Al-Ansari, L.S., Al-Hajjar, A.M.H. and Jawad, H. (2018) Calculating the Natural Frequency of Cantilever Tapered Beam Using Classical Rayleigh, Modified Rayleigh and Finite Element Methods. International Journal of Engineering & Technology, 7, 4866-4872.
[16]  Tang, S. and Sweetman, B. (2019) A Geometrically-Exact Momentum-Based Non-Linear Theory Applicable to Beams in Non-Inertial Frames. International Journal of Non-Linear Mechanics, 113, 158-170.
https://doi.org/10.1016/j.ijnonlinmec.2019.03.007
[17]  Reissner, E. (1972) On One-Dimensional Finite-Strain Beam Theory: The Plane Problem. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 23, 795-804.
https://doi.org/10.1007/bf01602645
[18]  Reissner, E. (1973) On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory. Studies in Applied Mathematics, 52, 87-95.
https://doi.org/10.1002/sapm197352287
[19]  Reissner, E. (1981) On Finite Deformations of Space-Curved Beams. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 32, 734-744.
https://doi.org/10.1007/bf00946983
[20]  Simo, J.C. (1985) A Finite Strain Beam Formulation. the Three-Dimensional Dynamic Problem. Part I. Computer Methods in Applied Mechanics and Engineering, 49, 55-70.
https://doi.org/10.1016/0045-7825(85)90050-7
[21]  Simo, J.C. and Vu-Quoc, L. (1986) A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects. Computer Methods in Applied Mechanics and Engineering, 58, 79-116.
https://doi.org/10.1016/0045-7825(86)90079-4
[22]  Simo, J.C. and Vu-Quoc, L. (1991) A Geometrically-Exact Rod Model Incorporating Shear and Torsion-Warping Deformation. International Journal of Solids and Structures, 27, 371-393.
https://doi.org/10.1016/0020-7683(91)90089-x
[23]  Vu-Quoc, L. and Li, S. (1995) Dynamics of Sliding Geometrically-Exact Beams: Large Angle Maneuver and Parametric Resonance. Computer Methods in Applied Mechanics and Engineering, 120, 65-118.
https://doi.org/10.1016/0045-7825(94)00051-n
[24]  Wang, L., Liu, X., Renevier, N., Stables, M. and Hall, G.M. (2014) Nonlinear Aeroelastic Modelling for Wind Turbine Blades Based on Blade Element Momentum Theory and Geometrically Exact Beam Theory. Energy, 76, 487-501.
https://doi.org/10.1016/j.energy.2014.08.046
[25]  Invernizzi, D. and Dozio, L. (2016) A Fully Consistent Linearized Model for Vibration Analysis of Rotating Beams in the Framework of Geometrically Exact Theory. Journal of Sound and Vibration, 370, 351-371.
https://doi.org/10.1016/j.jsv.2016.01.049
[26]  Chadha, M. and Todd, M.D. (2020) The Mathematical Theory of a Higher-Order Geometrically-Exact Beam with a Deforming Cross-Section. International Journal of Solids and Structures, 202, 854-880.
https://doi.org/10.1016/j.ijsolstr.2020.06.002
[27]  Zhong, H. and Yu, T. (2006) Flexural Vibration Analysis of an Eccentric Annular Mindlin Plate. Archive of Applied Mechanics, 77, 185-195.
https://doi.org/10.1007/s00419-006-0083-z
[28]  Xiao, N. and Zhong, H. (2012) Non-linear Quadrature Element Analysis of Planar Frames Based on Geometrically Exact Beam Theory. International Journal of Non-Linear Mechanics, 47, 481-488.
https://doi.org/10.1016/j.ijnonlinmec.2011.09.021
[29]  Hodges, D., Rajagopal, A., Ho, J. and Yu, W. (2010) Stress and Strain Recovery for the In-Plane Deformation of an Isotropic Tapered Strip-Beam. Journal of Mechanics of Materials and Structures, 5, 963-975.
https://doi.org/10.2140/jomms.2010.5.963
[30]  Conway, H.D., Becker, E.C.H. and Dubil, J.F. (1964) Vibration Frequencies of Tapered Bars and Circular Plates. Journal of Applied Mechanics, 31, 329-331.
https://doi.org/10.1115/1.3629606
[31]  Bellman, R. and Casti, J. (1971) Differential Quadrature and Long-Term Integration. Journal of Mathematical Analysis and Applications, 34, 235-238.
https://doi.org/10.1016/0022-247x(71)90110-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133