全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Do Short GRBs Exhibit an Anticorrelation between Their Intrinsic Duration and Redshift?

DOI: 10.4236/jamp.2025.132026, PP. 475-489

Keywords: Gamma-Ray Bursts, Intrinsic Duration, Redshift, Metallicity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gamma-ray bursts (GRBs) are violent stellar explosions that are traditionally divided into two groups: short bursts (SGRBs) with an observed duration T90 < 2 s, and long bursts (LGRBs) with an observed duration T90 > 2 s, where T90 refers to the time needed for 90% of the fluence to be detected. Studies of progenitor models suggest that LGRBs emanate from the core collapse of massive stars, while SGRBs result from the merging of two compact objects, like two neutron stars or a neutron star and a black hole. Recent studies have found evidence that there is an anticorrelation between the intrinsic duration and the redshift of long GRBs. In this study, we first check whether LGRBs exhibit an anticorrelation between their intrinsic duration and redshift using an expanded dataset of long bursts that we have compiled. Next, we investigate whether this anticorrelation applies to SGRBs as well using a sample of short GRBs that we have compiled. Our analysis confirms the results obtained by previous studies regarding the anticorrelation for LGRBs. On the other hand, our results indicate that short GRBs do not exhibit such an anticorrelation. We discuss the implications of our results in the context of how metallicity evolves with redshift and the role that it might play in the aforementioned anticorrelation.

References

[1]  Klebesadel, R.W., Strong, I.B. and Olson, R.A. (1973) Observations of Gamma-Ray Bursts of Cosmic Origin. The Astrophysical Journal, 182, L85-L88.
https://doi.org/10.1086/181225
[2]  Kouveliotou, C., Meegan, C.A., Fishman, G.J., Bhat, N.P., Briggs, M.S., Koshut, T.M., et al. (1993) Identification of Two Classes of Gamma-Ray Bursts. The Astrophysical Journal, 413, L101.
https://doi.org/10.1086/186969
[3]  Lloyd-Ronning, N.M., Johnson, J., Upton Sanderbeck, P., Silva, M. and Cheng, R.M. (2024) White Dwarf-Black Hole Binary Progenitors of Low-Redshift Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 535, 2800-2811.
https://doi.org/10.1093/mnras/stae2502
[4]  Wu, T.Y. and Fishbach, M. (2024) Are Long Gamma-Ray Bursts Progenitors to Merging Binary Black Holes? The Astrophysical Journal, 977, Article No. 239.
https://doi.org/10.3847/1538-4357/ad98ed
[5]  Hasan, A.M. and Azzam, W.J. (2024) Does the Redshift Distribution of Swift Long GRBs Trace the Star-Formation Rate? International Journal of Astronomy and Astrophysics, 14, 20-44.
https://doi.org/10.4236/ijaa.2024.141002
[6]  Petrosian, V. and Dainotti, M.G. (2024) Progenitors of Low-Redshift Gamma-Ray Bursts. The Astrophysical Journal Letters, 963, L12.
https://doi.org/10.3847/2041-8213/ad2763
[7]  Troja, E., Fryer, C.L., O’Connor, B., Ryan, G., Dichiara, S., Kumar, A., et al. (2022) A Nearby Long Gamma-Ray Burst from a Merger of Compact Objects. Nature, 612, 228-231.
https://doi.org/10.1038/s41586-022-05327-3
[8]  Chen, J., Zhu, K., Peng, Z. and Zhang, L. (2023) Unsupervised Machine Learning Classification of fermi Gamma-Ray Bursts Using Spectral Parameters. Monthly Notices of the Royal Astronomical Society, 527, 4272-4284.
https://doi.org/10.1093/mnras/stad3407
[9]  Zhu, S., Sun, W., Ma, D. and Zhang, F. (2024) Classification of Fermi Gamma-Ray Bursts Based on Machine Learning. Monthly Notices of the Royal Astronomical Society, 532, 1434-1443.
https://doi.org/10.1093/mnras/stae1594
[10]  Rueda, J.A., Becerra, L., Bianco, C.L., Della Valle, M., Fryer, C.L., Guidorzi, C., et al. (2025) Long and Short GRB Connection. Physical Review D, 111, Article ID: 023010.
https://doi.org/10.1103/physrevd.111.023010
[11]  Luo, J., Zhang, L., Zhang, L., Huang, Y., Lin, J., Lu, J., et al. (2024) The Classification and Formation Rate of Swift/BAT Gamma-Ray Bursts. The Astrophysical Journal Letters, 977, L52.
https://doi.org/10.3847/2041-8213/ad9917
[12]  Zitouni, H., Guessoum, N., Azzam, W.J. and Mochkovitch, R. (2015) Statistical Study of Observed and Intrinsic Durations among BATSE and Swift/BAT GRBs. Astrophysics and Space Science, 357, Article No. 7.
https://doi.org/10.1007/s10509-015-2311-x
[13]  Zitouni, H., Guessoum, N. and Azzam, W. (2022) Testing the Amati and Yonetoku Correlations for Short Gamma-Ray Bursts. Astrophysics and Space Science, 367, Article No. 74.
https://doi.org/10.1007/s10509-022-04100-2
[14]  Zitouni, H., Guessoum, N. and Azzam, W.J. (2014) Revisiting the Amati and Yonetoku Correlations with Swift GRBs. Astrophysics and Space Science, 351, 267-279.
https://doi.org/10.1007/s10509-014-1839-5
[15]  Amati, L., Guidorzi, C., Frontera, F., Della Valle, M., Finelli, F., Landi, R., et al. (2008) Measuring the Cosmological Parameters with the Ep,i-Eiso Correlation of Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 391, 577-584.
https://doi.org/10.1111/j.1365-2966.2008.13943.x
[16]  Amati, L. (2006) The Ep,i-Eiso Correlation in Gamma-Ray Bursts: Updated Observational Status, Re-Analysis and Main Implications. Monthly Notices of the Royal Astronomical Society, 372, 233-245.
https://doi.org/10.1111/j.1365-2966.2006.10840.x
[17]  Amati, L., Frontera, F., Tavani, M., in 't Zand, J.J.M., Antonelli, A., Costa, E., et al. (2002) Intrinsic Spectra and Energetics of BeppoSAX Gamma-Ray Bursts with Known Redshifts. Astronomy & Astrophysics, 390, 81-89.
https://doi.org/10.1051/0004-6361:20020722
[18]  Amati, L., Frontera, F. and Guidorzi, C. (2009) Extremely Energetic fermi Gamma-Ray Bursts Obey Spectral Energy Correlations. Astronomy & Astrophysics, 508, 173-180.
https://doi.org/10.1051/0004-6361/200912788
[19]  Qin, Y. and Chen, Z. (2013) Statistical Classification of Gamma-Ray Bursts Based on the Amati Relation. Monthly Notices of the Royal Astronomical Society, 430, 163-173.
https://doi.org/10.1093/mnras/sts547
[20]  Chakraborty, A., Dainotti, M., Cantrell, O. and Lloyd-Ronning, N. (2023) Radio-bright versus Radio-Dark Gamma-Ray Bursts—More Evidence for Distinct Progenitors. Monthly Notices of the Royal Astronomical Society, 520, 5764-5782.
https://doi.org/10.1093/mnras/stad438
[21]  Lloyd-Ronning, N.M., Aykutalp, A. and Johnson, J.L. (2019) On the Cosmological Evolution of Long Gamma-Ray Burst Properties. Monthly Notices of the Royal Astronomical Society, 488, 5823-5832.
https://doi.org/10.1093/mnras/stz2155
[22]  Lloyd-Ronning, N.M., Gompertz, B., Pe’er, A., Dainotti, M. and Fruchter, A. (2019) A Comparison between Radio Loud and Quiet Gamma-Ray Bursts, and Evidence for a Potential Correlation between Intrinsic Duration and Redshift in the Radio Loud Population. The Astrophysical Journal, 871, Article No. 118.
https://doi.org/10.3847/1538-4357/aaf6ac
[23]  Lloyd-Ronning, N., Johnson, J., Cheng, R.M., Luu, K., Sanderbeck, P.U., Kenoly, L., et al. (2023) On the Anticorrelation between Duration and Redshift in Gamma-Ray Bursts. The Astrophysical Journal, 947, Article No. 85.
https://doi.org/10.3847/1538-4357/acc795
[24]  Krühler, T., Malesani, D., Fynbo, J.P.U., Hartoog, O.E., Hjorth, J., Jakobsson, P., et al. (2015) GRB Hosts through Cosmic Time. Astronomy & Astrophysics, 581, A125.
https://doi.org/10.1051/0004-6361/201425561
[25]  Xiao, L. and Schaefer, B.E. (2011) Redshift Catalog for Swift Long Gamma-Ray Bursts. The Astrophysical Journal, 731, Article No. 103.
https://doi.org/10.1088/0004-637x/731/2/103
[26]  Wang, F.Y. and Dai, Z.G. (2014) Long GRBs Are Metallicity-Biased Tracers of Star Formation: Evidence from Host Galaxies and Redshift Distribution. The Astrophysical Journal Supplement Series, 213, Article No. 15.
https://doi.org/10.1088/0067-0049/213/1/15
[27]  Zhu, S., Liu, Z., Shi, Y., Ding, X., Sun, W. and Zhang, F. (2023) The Intrinsic Statistical Properties and Correlations of Short Gamma-Ray Bursts. The Astrophysical Journal, 950, Article No. 30.
https://doi.org/10.3847/1538-4357/acc83b
[28]  Artale, M.C., Mapelli, M., Bouffanais, Y., Giacobbo, N., Pasquato, M. and Spera, M. (2019) Mass and Star Formation Rate of the Host Galaxies of Compact Binary Mergers across Cosmic Time. Monthly Notices of the Royal Astronomical Society, 491, 3419-3434.
https://doi.org/10.1093/mnras/stz3190
[29]  Dvorkin, I., Vangioni, E., Silk, J., Uzan, J. and Olive, K.A. (2016) Metallicity-Constrained Merger Rates of Binary Black Holes and the Stochastic Gravitational Wave Background. Monthly Notices of the Royal Astronomical Society, 461, 3877-3885.
https://doi.org/10.1093/mnras/stw1477
[30]  Mapelli, M., Giacobbo, N., Toffano, M., Ripamonti, E., Bressan, A., Spera, M., et al. (2018) The Host Galaxies of Double Compact Objects Merging in the Local Universe. Monthly Notices of the Royal Astronomical Society, 481, 5324-5330.
https://doi.org/10.1093/mnras/sty2663
[31]  Nugent, A.E., Fong, W., Leja, J., Berger, E., Zevin, M., et al. (2022) Short GRB Host Galaxies. II. A Legacy Sample of Redshifts, Stellar Population Properties, and Implications for Their Neutron Star Merger Origins. The Astrophysical Journal, 940, Article No. 57.
https://doi.org/10.3847/1538-4357/ac91d1
[32]  Santoliquido, F., Mapelli, M., Bouffanais, Y., Giacobbo, N., Di Carlo, U.N., Rastello, S., et al. (2020) The Cosmic Merger Rate Density Evolution of Compact Binaries Formed in Young Star Clusters and in Isolated Binaries. The Astrophysical Journal, 898, Article No. 152.
https://doi.org/10.3847/1538-4357/ab9b78
[33]  Santoliquido, F., Mapelli, M., Giacobbo, N., Bouffanais, Y. and Artale, M.C. (2021) The Cosmic Merger Rate Density of Compact Objects: Impact of Star Formation, Metallicity, Initial Mass Function, and Binary Evolution. Monthly Notices of the Royal Astronomical Society, 502, 4877-4889.
https://doi.org/10.1093/mnras/stab280
[34]  Santoliquido, F., Mapelli, M., Artale, M.C. and Boco, L. (2022) Modelling the Host Galaxies of Binary Compact Object Mergers with Observational Scaling Relations. Monthly Notices of the Royal Astronomical Society, 516, 3297-3317.
https://doi.org/10.1093/mnras/stac2384
[35]  Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., et al. (2017) Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. The Astrophysical Journal Letters, 848, L13.
https://doi.org/10.3847/2041-8213/aa920c

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133