全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Favipiravir-RTP as a Potential Therapeutic Agent for Inhibiting Dengue Virus Replication

DOI: 10.4236/jbm.2025.132021, PP. 268-286

Keywords: Dengue, Antiviral Drugs, Favipiravir, AlphaFold 3, Molecular Docking

Full-Text   Cite this paper   Add to My Lib

Abstract:

Currently, no clinically approved therapeutic drugs specifically target dengue virus infections. This study aims to evaluate the potential of antiviral drugs originally developed for other purposes as viable candidates for combating dengue virus. The RNA-elongating NS5-NS3 complex is a critical molecular structure responsible for dengue virus replication. Using the cryo-electron microscopy (Cryo-EM) structures available in the Protein Data Bank and AlphaFold 3 predictions, this study simulated the replication complexes of dengue virus serotypes 1, 2, 3, and 4. The RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein within the NS5-NS3 complex was selected as the molecular docking template. Molecular docking simulations were conducted using AutoDock4. Seven small molecules—AT-9010, RK-0404678, Oseltamivir, Remdesivir, Favipiravir-RTP, Abacavir, and Ribavirin—were assessed for binding affinity by calculating their binding energies, where lower values indicate stronger molecular interactions. Based on published data, antiviral replication assays were conducted for the four dengue virus serotypes. AT-9010 and RK-0404678 were used as benchmarks for antiviral replication efficacy, while Oseltamivir served as the control group. The Mann-Whitney U test was employed to classify the clinical antiviral candidates—Remdesivir, Favipiravir-RTP, Abacavir, and Ribavirin. Results demonstrated that among the four small molecules, Favipiravir-RTP exhibited the highest binding affinity with the RdRp domain of the NS5-NS3 complex across all four dengue virus serotypes. Statistical classification revealed that in five simulated scenarios—including the four virus serotypes and Cryo-EM structural data—Favipiravir-RTP shared three classifications with the benchmark molecule AT-9010. Based on these findings, Favipiravir-RTP, a broad-spectrum antiviral agent, shows potential as a therapeutic option for inhibiting dengue virus replication. However, further clinical trials are necessary to validate their efficacy in humans.

References

[1]  Wilson, M.E. and Chen, L.H. (2014) Dengue: Update on Epidemiology. Current Infectious Disease Reports, 17, Article No. 457.
https://doi.org/10.1007/s11908-014-0457-2
[2]  Bashyam, H.S., Green, S. and Rothman, A.L. (2006) Dengue Virus-Reactive CD8+ T Cells Display Quantitative and Qualitative Differences in Their Response to Variant Epitopes of Heterologous Viral Serotypes. The Journal of Immunology, 176, 2817-2824.
https://doi.org/10.4049/jimmunol.176.5.2817
[3]  Bello, S.O.T., Tapsoba, A.S.A., Zoure, A.A., Bassole, Y.J.R., Yogo, W.K., Bado, P., et al. (2024) Molecular Characterization of the Four Serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) of Dengue Virus Circulating in Ouagadougou, Burkina Faso. Open Journal of Epidemiology, 14, 565-578.
https://doi.org/10.4236/ojepi.2024.144040
[4]  Simmons, C.P., Farrar, J.J., van Vinh Chau, N. and Wills, B. (2012) Dengue. New England Journal of Medicine, 366, 1423-1432.
https://doi.org/10.1056/nejmra1110265
[5]  Bosch, I., Reddy, A., de Puig, H., Ludert, J.E., Perdomo-Celis, F., Narváez, C.F., et al. (2020) Serotype-specific Detection of Dengue Viruses in a Nonstructural Protein 1-Based Enzyme-Linked Immunosorbent Assay Validated with a Multi-National Cohort. PLOS Neglected Tropical Diseases, 14, e0008203.
https://doi.org/10.1371/journal.pntd.0008203
[6]  World Health Organization (2024) Disease Outbreak News: Dengue—Global situation.
https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON498
[7]  Klema, V., Padmanabhan, R. and Choi, K. (2015) Flaviviral Replication Complex: Coordination between RNA Synthesis and 5’-RNA Capping. Viruses, 7, 4640-4656.
https://doi.org/10.3390/v7082837
[8]  Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C.K.E., Walther, P., et al. (2009) Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites. Cell Host & Microbe, 5, 365-375.
https://doi.org/10.1016/j.chom.2009.03.007
[9]  Brand, C., Bisaillon, M. and Geiss, B.J. (2017) Organization of the Flavivirus RNA Replicase Complex. WIREs RNA, 8, e1437.
https://doi.org/10.1002/wrna.1437
[10]  Tay, M.Y.F. and Vasudevan, S.G. (2018) The Transactions of NS3 and NS5 in Flaviviral RNA Replication. In: Hilgenfeld, R. and Vasudevan, S., Eds., Advances in Experimental Medicine and Biology, Springer, 147-163.
https://doi.org/10.1007/978-981-10-8727-1_11
[11]  Egloff, M.-P., Benarroch, D., Selisko, B., Romette, J.-L. and Canard, B. (2002) An RNA Cap (nucleoside-2’-O-)-Methyltransferase in the Flavivirus RNA Polymerase NS5: Crystal Structure and Functional Characterization. The EMBO Journal, 21, 2757-2768.
https://doi.org/10.1093/emboj/21.11.2757
[12]  Issur, M., Geiss, B.J., Bougie, I., Picard-Jean, F., Despins, S., Mayette, J., et al. (2009) The Flavivirus NS5 Protein Is a True RNA Guanylyltransferase That Catalyzes a Two-Step Reaction to Form the RNA Cap Structure. RNA, 15, 2340-2350.
https://doi.org/10.1261/rna.1609709
[13]  You, S. and Padmanabhan, R. (1999) A Novel in vitro Replication System for Dengue Virus. Initiation of RNA Synthesis at the 3’-End of Exogenous Viral RNA Templates Requires 5’-and 3’-Terminal Complementary Sequence Motifs of the Viral RNA. Journal of Biological Chemistry, 274, 33714-33722.
https://doi.org/10.1074/jbc.274.47.33714
[14]  Villordo, S.M. and Gamarnik, A.V. (2009) Genome Cyclization as Strategy for Flavivirus RNA Replication. Virus Research, 139, 230-239.
https://doi.org/10.1016/j.virusres.2008.07.016
[15]  Filomatori, C.V., Lodeiro, M.F., Alvarez, D.E., Samsa, M.M., Pietrasanta, L. and Gamarnik, A.V. (2006) A 5’ RNA Element Promotes Dengue Virus RNA Synthesis on a Circular Genome. Genes & Development, 20, 2238-2249.
https://doi.org/10.1101/gad.1444206
[16]  Gebhard, L.G., Filomatori, C.V. and Gamarnik, A.V. (2011) Functional RNA Elements in the Dengue Virus Genome. Viruses, 3, 1739-1756.
https://doi.org/10.3390/v3091739
[17]  Choi, K.H. (2021) The Role of the Stem-Loop A RNA Promoter in Flavivirus Replication. Viruses, 13, Article 1107.
https://doi.org/10.3390/v13061107
[18]  Osawa, T., Aoki, M., Ehara, H. and Sekine, S. (2023) Structures of Dengue Virus RNA Replicase Complexes. Molecular Cell, 83, 2781-2791.E4.
https://doi.org/10.1016/j.molcel.2023.06.023
[19]  Low, J.G., Gatsinga, R., Vasudevan, S.G. and Sampath, A. (2018) Dengue Antiviral Development: A Continuing Journey. In: Hilgenfeld, R. and Vasudevan, S., Eds., Advances in Experimental Medicine and Biology, Springer, 319-332.
https://doi.org/10.1007/978-981-10-8727-1_22
[20]  Boldescu, V., Behnam, M.A.M., Vasilakis, N. and Klein, C.D. (2017) Broad-Spectrum Agents for Flaviviral Infections: Dengue, Zika and Beyond. Nature Reviews Drug Discovery, 16, 565-586.
https://doi.org/10.1038/nrd.2017.33
[21]  Troost, B. and Smit, J.M. (2020) Recent Advances in Antiviral Drug Development Towards Dengue Virus. Current Opinion in Virology, 43, 9-21.
https://doi.org/10.1016/j.coviro.2020.07.009
[22]  Yang, C., Xie, W., Zhang, H., Xie, W., Tian, T. and Qin, Z. (2022) Recent Two-Year Advances in Anti-Dengue Small-Molecule Inhibitors. European Journal of Medicinal Chemistry, 243, Article 114753.
https://doi.org/10.1016/j.ejmech.2022.114753
[23]  Nasir, A., Samad, A., Ajmal, A., Li, P., Islam, M., Ullah, S., et al. (2024) Identification of Novel and Potential Inhibitors against the Dengue Virus NS2B/NS3 Protease Using Virtual Screening and Biomolecular Simulations. International Journal of Biological Macromolecules, 272, Article 132855.
https://doi.org/10.1016/j.ijbiomac.2024.132855
[24]  Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., et al. (2024) Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature, 630, 493-500.
https://doi.org/10.1038/s41586-024-07487-w
[25]  Zhang, Y. and Skolnick, J. (2004) Scoring Function for Automated Assessment of Protein Structure Template Quality. Proteins: Structure, Function, and Bioinformatics, 57, 702-710.
https://doi.org/10.1002/prot.20264
[26]  Xu, J. and Zhang, Y. (2010) How Significant Is a Protein Structure Similarity with TM-Score=0.5? Bioinformatics, 26, 889-895.
https://doi.org/10.1093/bioinformatics/btq066
[27]  Feracci, M., Eydoux, C., Fattorini, V., Lo Bello, L., Gauffre, P., Selisko, B., et al. (2023) AT-752 Targets Multiple Sites and Activities on the Dengue Virus Replication Enzyme NS5. Antiviral Research, 212, Article 105574.
https://doi.org/10.1016/j.antiviral.2023.105574
[28]  Shimizu, H., Saito, A., Mikuni, J., Nakayama, E.E., Koyama, H., Honma, T., et al. (2019) Discovery of a Small Molecule Inhibitor Targeting Dengue Virus NS5 RNA-Dependent RNA Polymerase. PLOS Neglected Tropical Diseases, 13, e0007894.
https://doi.org/10.1371/journal.pntd.0007894
[29]  Shapiro, S.S. and Wilk, M.B. (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52, 591-611.
https://doi.org/10.1093/biomet/52.3-4.591
[30]  Mann, H.B. and Whitney, D.R. (1947) On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18, 50-60.
https://doi.org/10.1214/aoms/1177730491
[31]  Thissen, D., Steinberg, L. and Kuang, D. (2002) Quick and Easy Implementation of the Benjamini-Hochberg Procedure for Controlling the False Positive Rate in Multiple Comparisons. Journal of Educational and Behavioral Statistics, 27, 77-83.
https://www.jstor.org/stable/3648147
https://doi.org/10.3102/10769986027001077
[32]  Good, S.S., Shannon, A., Lin, K., Moussa, A., Julander, J.G., La Colla, P., et al. (2021) Evaluation of AT-752, a Double Prodrug of a Guanosine Nucleotide Analog with in Vitro and in Vivo Activity against Dengue and Other Flaviviruses. Antimicrobial Agents and Chemotherapy, 65.
https://doi.org/10.1128/aac.00988-21
[33]  Shiraki, K. and Daikoku, T. (2020) Favipiravir, an Anti-Influenza Drug against Life-Threatening RNA Virus Infections. Pharmacology & Therapeutics, 209, Article 107512.
https://doi.org/10.1016/j.pharmthera.2020.107512
[34]  Smee, D.F., Hurst, B.L., Egawa, H., Takahashi, K., Kadota, T. and Furuta, Y. (2009) Intracellular Metabolism of Favipiravir (T-705) in Uninfected and Influenza A (H5N1) Virus-Infected Cells. Journal of Antimicrobial Chemotherapy, 64, 741-746.
https://doi.org/10.1093/jac/dkp274
[35]  Gunaydin-Akyildiz, A., Aksoy, N., Boran, T., Ilhan, E.N. and Ozhan, G. (2022) Favipiravir Induces Oxidative Stress and Genotoxicity in Cardiac and Skin Cells. Toxicology Letters, 371, 9-16.
https://doi.org/10.1016/j.toxlet.2022.09.011
[36]  Kara, A., Yakut, S., Caglayan, C., Atçalı, T., Ulucan, A. and Kandemir, F.M. (2022) Evaluation of the Toxicological Effects of Favipiravir (T-705) on Liver and Kidney in Rats: Biochemical and Histopathological Approach. Drug and Chemical Toxicology, 46, 546-556.
https://doi.org/10.1080/01480545.2022.2066116
[37]  Doi, Y., Hibino, M., Hase, R., Yamamoto, M., Kasamatsu, Y., Hirose, M., et al. (2020) A Prospective, Randomized, Open-Label Trial of Early versus Late Favipiravir Therapy in Hospitalized Patients with COVID-19. Antimicrobial Agents and Chemotherapy, 64.
https://doi.org/10.1128/aac.01897-20
[38]  Ivashchenko, A.A., Dmitriev, K.A., Vostokova, N.V., Azarova, V.N., Blinow, A.A., Egorova, A.N., et al. (2020) AVIFAVIR for Treatment of Patients with Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clinical Infectious Diseases, 73, 531-534.
https://doi.org/10.1093/cid/ciaa1176
[39]  Pilkington, V., Pepperrell, T. and Hill, A. (2020) A Review of the Safety of Favipiravir—A Potential Treatment in the COVID-19 Pandemic? Journal of Virus Eradication, 6, 45-51.
https://doi.org/10.1016/s2055-6640(20)30016-9
[40]  Korula, P., Alexander, H., John, J.S., Kirubakaran, R., Singh, B., Tharyan, P., et al. (2024) Favipiravir for Treating COVID-19. Cochrane Database of Systematic Reviews, No. 2, CD015219.
https://doi.org/10.1002/14651858.cd015219.pub2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133