全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Clay Raw Materials from Three Kankan Clay Deposits with a View to Their Use as Building Materials

DOI: 10.4236/msce.2025.132003, PP. 31-52

Keywords: Characterization, Clay Minerals, Kankan, Habitat Construction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.

References

[1]  Bergaya, F. and Lagaly, G. (2006) Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science. In: Developments in Clay Science, Elsevier, 1-18.
https://doi.org/10.1016/s1572-4352(05)01001-9
[2]  Belghazdis, M., Hachem, E. and Bendouch, A. (2022) Natural Clays from Morocco: Potentials and Applications. Journal of Sustainability Science and Management, 17, 240-254.
https://doi.org/10.46754/jssm.2022.02.017
[3]  Guggenheim, S. and Martin, R.T. (1995) Definition of Clay and Clay Mineral: Joint Report of the Aipea Nomenclature and CMS Nomenclature Committees. Clays and Clay Minerals, 43, 255-256.
https://doi.org/10.1346/ccmn.1995.0430213
[4]  Oumar, K.O., Gilbert François, N.N., Bertrand, M.M., Nathanael, T., Constantin, B.E., Simon, M.J., et al. (2022) Mineralogical, Geochemical Characterization and Physicochemical Properties of Kaolinitic Clays of the Eastern Part of the Douala Sub-Basin, Cameroon, Central Africa. Applied Sciences, 12, Article No. 9143.
https://doi.org/10.3390/app12189143
[5]  Kouakou, L.P.M.-., Kouamé, A.N., Doubi, B.I.H.G., Méité, N., Kangah, J.T., Zokou, E.P., et al. (2022) Characterization of Two Clay Raw Materials from Côte D’ivoire with a View to Enhancing Them in Eco-Construction. Journal of Minerals and Materials Characterization and Engineering, 10, 198-208.
https://doi.org/10.4236/jmmce.2022.102016
[6]  Yaya, B.M., Diaka, S., Bakam, S. and Phillippe, B. (2023) Potential Applications of Débélé Clays (Guinea): Formulation of Ceramic Compositions and Hydraulic Binders. Journal of Natural Sciences, 3, 237-247.
[7]  Nshimiyimana, P., Fagel, N., Messan, A., Wetshondo, D.O. and Courard, L. (2020) Physico-Chemical and Mineralogical Characterization of Clay Materials Suitable for Production of Stabilized Compressed Earth Blocks. Construction and Building Materials, 241, Article ID: 118097.
https://doi.org/10.1016/j.conbuildmat.2020.118097
[8]  Boufeev, Y.M., et al. (2010) Liés; Min. des Mines et de la Géologie Rép. de Guinée; Geoprospects Ltd; Univ. D’Etat de Moscou Lomonossov (Fac. Géol.)-Cona-kry-Moscow; Aquarel.
[9]  ONU-HABITAT (2020) Diagnostic du développement urbain, de la mise en oeuvre des politiques publiques et des défis de l’urbanisation durable en Guinée.
[10]  Barry, T.A. (2023) DATU 2022, Google Earth Projection WGS 84 UTM 29 N.
[11]  Diallo, I.D., Tilioua, A., Darraz, C., Alali, A. and Sidibe, D. (2023) Study and Analysis of Seasonal Soil Degradation in Lower Guinea and Forest Guinea. Results in Engineering, 19, Article ID: 101381.
https://doi.org/10.1016/j.rineng.2023.101381
[12]  Tchokpon, K.G., Kaki, C., Adissin, G.L., Yessoufou, S. and Kourouma, M. (2019) Metasediments in the Alahina Sector and Associated Mineralization (North-Eastern Guinea). Open Journal of Geology, 9, 897-918.
https://doi.org/10.4236/ojg.2019.912097
[13]  Diallo, M.-O., et al. (2024) Geological Features of the Silakoro (Kintinian) Gold Deposit, SAG Concession-Siguiri Prefecture-Kankan-Guinea Administrative Region. World Journal of Advanced Research and Reviews, 21, 843-857.
https://doi.org/10.30574/wjarr.2024.21.1.2663
[14]  Vieira, C.M.F., Sánchez, R. and Monteiro, S.N. (2008) Characteristics of Clays and Properties of Building Ceramics in the State of Rio De Janeiro, Brazil. Construction and Building Materials, 22, 781-787.
https://doi.org/10.1016/j.conbuildmat.2007.01.006
[15]  Danish, A., Totiç, E., Bayram, M., Sütçü, M., Gencel, O., Erdoğmuş, E., et al. (2022) Assessment of Mineralogical Characteristics of Clays and the Effect of Waste Materials on Their Index Properties for the Production of Bricks. Materials, 15, Article No. 8908.
https://doi.org/10.3390/ma15248908
[16]  Refaey, Y., Jansen, B., El-Shater, A., El-Haddad, A. and Kalbitz, K. (2015) Clay Minerals of Pliocene Deposits and Their Potential Use for the Purification of Polluted Wastewater in the Sohag Area, Egypt. Geoderma Regional, 5, 215-225.
https://doi.org/10.1016/j.geodrs.2015.08.002
[17]  El-Shater, A. (2022) Crystallographic and Morphological Characteristics of Natural Kaolins, Aswan Region, Egypt. International Journal of Earth Science and Geology, 4, 121-130.
https://doi.org/10.18689/ijeg-1000116
[18]  Mohamed, M.S., Amer, S.A.M. and Abdel-Kader, G.A. (2021) Clay Mineralogy in Relation to Geomorphic Aspects in Wadi El-Natroun Depression Soils, Western Deserts, Egypt. Menoufia Journal of Soil Science, 6, 363-375.
https://doi.org/10.21608/mjss.2021.213285
[19]  Fadil-Djenabou, S., Ndjigui, P. and Mbey, J.A. (2015) Mineralogical and Physicochemical Characterization of Ngaye Alluvial Clays (Northern Cameroon) and Assessment of Its Suitability in Ceramic Production. Journal of Asian Ceramic Societies, 3, 50-58.
https://doi.org/10.1016/j.jascer.2014.10.008
[20]  Tsozué, D., Nzeugang, A.N., Mache, J.R., Loweh, S. and Fagel, N. (2017) Mineralogical, Physico-Chemical and Technological Characterization of Clays from Maroua (Far-North, Cameroon) for Use in Ceramic Bricks Production. Journal of Building Engineering, 11, 17-24.
https://doi.org/10.1016/j.jobe.2017.03.008
[21]  Islam, A., Khan, Z., Hussain, M. and Uddin, M. (2022) Scanning Electron Microscopic Analysis of Clays in the Soils of Lower Atrai Basin of Bangladesh. Dhaka University Journal of Biological Sciences, 31, 105-115.
https://doi.org/10.3329/dujbs.v31i1.57920
[22]  Bakary Soro, S., Coulibaly, M., Paul Gauly, L., N’Dri, S.R., Sanou, A. and Trokourey, A. (2023) Characterization of Clay Materials from Côte D’ivoire: Possible Application for the Electrochemical Analysis. Journal of Materials Science Research, 12, 51-64.
https://doi.org/10.5539/jmsr.v12n1p51
[23]  Ihekweme, G.O., Shondo, J.N., Orisekeh, K.I., Kalu-Uka, G.M., Nwuzor, I.C. and Onwualu, A.P. (2020) Characterization of Certain Nigerian Clay Minerals for Water Purification and Other Industrial Applications. Heliyon, 6, e03783.
https://doi.org/10.1016/j.heliyon.2020.e03783
[24]  Kouadio, L.M., Lebouachera, S.E.I., Blanc, S., Sei, J., Miqueu, C., Pannier, F., et al. (2022) Characterization of Clay Materials from Ivory Coast for Their Use as Adsorbents for Wastewater Treatment. Journal of Minerals and Materials Characterization and Engineering, 10, 319-337.
https://doi.org/10.4236/jmmce.2022.104023
[25]  Di Remigio, G., Rocchi, I. and Zania, V. (2021) Scanning Electron Microscopy and Clay Geomaterials: From Sample Preparation to Fabric Orientation Quantification. Applied Clay Science, 214, Article ID: 106249.
https://doi.org/10.1016/j.clay.2021.106249
[26]  Chen, L., Zhao, Y., Bai, H., Ai, Z., Chen, P., Hu, Y., et al. (2020) Role of Montmorillonite, Kaolinite, or Illite in Pyrite Flotation: Differences in Clay Behavior Based on Their Structures. Langmuir, 36, 10860-10867.
https://doi.org/10.1021/acs.langmuir.0c02073
[27]  Yao, X., Wu, Y., Jiang, J., Chen, X., Liu, D. and Hu, P. (2019) A Population Pharmacokinetic Study to Accelerate Early Phase Clinical Development for a Novel Drug, Teriflunomide Sodium, to Treat Systemic Lupus Erythematosus. European Journal of Pharmaceutical Sciences, 136, Article ID: 104942.
https://doi.org/10.1016/j.ejps.2019.05.020
[28]  Kormbaye, D., Mougabe, M., Haroun, A., Jonas, T. and Ngarmaim, N. (2024) Physicochimical, Mineralogical and Geotechnical Characterization of the Earth of the 9th District of the City of Ndjamena in Chad with a View to the Construction of Hydraulic Structures. International Journal of Advanced Research, 12, 224-231.
https://doi.org/10.21474/ijar01/18871
[29]  Garcia-Valles, M., Alfonso, P., Martínez, S. and Roca, N. (2020) Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain). Minerals, 10, Article No. 142.
https://doi.org/10.3390/min10020142
[30]  Zaccaron, A., de Souza Nandi, V., Dal Bó, M., Peterson, M., Angioletto, E. and Bernardin, A.M. (2020) Characterization and Use of Clays and Argillites from the South of Santa Catarina State, Brazil, for the Manufacture of Clay Ceramics. Clay Minerals, 55, 172-183.
https://doi.org/10.1180/clm.2020.23
[31]  Jozanikohan, G. and Abarghooei, M.N. (2022) The Fourier Transform Infrared Spectroscopy (FTIR) Analysis for the Clay Mineralogy Studies in a Clastic Reservoir. Journal of Petroleum Exploration and Production Technology, 12, 2093-2106.
https://doi.org/10.1007/s13202-021-01449-y
[32]  Vahur, S., Kiudorv, L., Somelar, P., Cayme, J., Retrato, M.D.C., Remigio, R.J., et al. (2021) Quantitative Mineralogical Analysis of Clay-Containing Materials Using ATR-FT-IR Spectroscopy with PLS Method. Analytical and Bioanalytical Chemistry, 413, 6535-6550.
https://doi.org/10.1007/s00216-021-03617-9
[33]  Gourouza, M., et al. (2013) Caractérisation d’une argile mixte du Niger. African and Malagasy Council for Higher Education, 1, 36-37.
[34]  Ndzana, G.M., Huang, L., Wang, J.B. and Zhang, Z.Y. (2018) Characteristics of Clay Minerals in Soil Particles from an Argillic Horizon of Alfisol in Central China. Applied Clay Science, 151, 148-156.
https://doi.org/10.1016/j.clay.2017.10.014
[35]  Wilson, M.J. (1994) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer.
[36]  Ravisankar, R., Naseerutheen, A., Rajalakshmi, A., Raja Annamalai, G. and Chandrasekaran, A. (2014) Application of Thermogravimetry-Differential Thermal Analysis (TG-DTA) Technique to Study the Ancient Potteries from Vellore Dist, Tamilnadu, India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 201-208.
https://doi.org/10.1016/j.saa.2014.02.095
[37]  Mukasa-Tebandeke, I.Z., Ssebuwufu, P.J.M., Nyanzi, S.A., Schumann, A., Nyakairu, G.W.A., Ntale, M., et al. (2015) The Elemental, Mineralogical, IR, DTA and XRD Analyses Characterized Clays and Clay Minerals of Central and Eastern Uganda. Advances in Materials Physics and Chemistry, 5, 67-86.
https://doi.org/10.4236/ampc.2015.52010
[38]  Milošević, M., Dabić, P., Gulicovski, J., Dodevski, V. and Rosić, M. (2024) Mineralogical Characterization of Raw Clay from Rujište (Serbia) Used in Traditional Pottery Manufacture. Minerals, 14, Article No. 469.
https://doi.org/10.3390/min14050469
[39]  Chakraborty, A.K. (2014) Phase Transformation of Kaolinite Clay. Springer.
[40]  Snellings, R., Almenares Reyes, R., Hanein, T., Irassar, E.F., Kanavaris, F., Maier, M., et al. (2022) Paper of RILEM TC 282-CCL: Mineralogical Characterization Methods for Clay Resources Intended for Use as Supplementary Cementitious Material. Materials and Structures, 55, Article No. 149.
https://doi.org/10.1617/s11527-022-01973-1
[41]  Geng, J. and Sun, Q. (2018) Effects of High Temperature Treatment on Physical-Thermal Properties of Clay. Thermochimica Acta, 666, 148-155.
https://doi.org/10.1016/j.tca.2018.06.018
[42]  Földvári, M. (2011) Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice. In: Occasional Papers of the Geological Institute of Hungary, No. 213, Geological Inst. of Hungary, 68-70.
[43]  Dewi, R., Agusnar, H., Alfian, Z. and Tamrin, (2018) Characterization of Technical Kaolin Using XRF, SEM, XRD, FTIR and Its Potentials as Industrial Raw Materials. Journal of Physics: Conference Series, 1116, Article ID: 042010.
https://doi.org/10.1088/1742-6596/1116/4/042010
[44]  Salihu, S.A. and Suleiman, I.Y. (2018) Analyse comparative des caractéristiques physiques et chimiques de gisements d’argiles sélectionnés dans l’État de Kebbi. Au Nigeria, 13, 163-173.
[45]  Diko-Makia, L. and Ligege, R. (2020) Composition and Technological Properties of Clays for Structural Ceramics in Limpopo (South Africa). Minerals, 10, Article No. 700.
https://doi.org/10.3390/min10080700
[46]  Milošević, M., Logar, M. and Djordjević, B. (2020) Mineralogical Analysis of a Clay Body from Zlakusa, Serbia, Used in the Manufacture of Traditional Pottery. Clay Minerals, 55, 142-149.
https://doi.org/10.1180/clm.2020.20
[47]  Ferrari, S. and Gualtieri, A. (2006) The Use of Illitic Clays in the Production of Stoneware Tile Ceramics. Applied Clay Science, 32, 73-81.
https://doi.org/10.1016/j.clay.2005.10.001
[48]  Hussin, A., Rahman, A.H.A. and Ibrahim, K.Z. (2018) Mineralogy and Geochemistry of Clays from Malaysia and Its Industrial Application. IOP Conference Series: Earth and Environmental Science, 212, Article ID: 012040.
https://doi.org/10.1088/1755-1315/212/1/012040
[49]  Athman, S., Sdiri, A. and Boufatit, M. (2019) Spectroscopic and Mineralogical Characterization of Bentonite Clay (Ghardaïa, Algeria) for Heavy Metals Removal in Aqueous Solutions. International Journal of Environmental Research, 14, 1-14.
https://doi.org/10.1007/s41742-019-00232-6
[50]  Acevedo, N.I.A., Rocha, M.C.G. and Bertolino, L.C. (2017) Mineralogical Characterization of Natural Clays from Brazilian Southeast Region for Industrial Applications. Cerâmica, 63, 253-262.
https://doi.org/10.1590/0366-69132017633662045
[51]  Boruah, A., Rasheed, A., Mendhe, V.A. and Ganapathi, S. (2018) Specific Surface Area and Pore Size Distribution in Gas Shales of Raniganj Basin, India. Journal of Petroleum Exploration and Production Technology, 9, 1041-1050.
https://doi.org/10.1007/s13202-018-0583-8
[52]  Amari, A., Gannouni, H., Khan, M.I., Almesfer, M.K., Elkhaleefa, A.M. and Gannouni, A. (2018) Effect of Structure and Chemical Activation on the Adsorption Properties of Green Clay Minerals for the Removal of Cationic Dye. Applied Sciences, 8, Article No. 2302.
https://doi.org/10.3390/app8112302
[53]  Feng, D., Li, X., Wang, X., Li, J., Sun, F., Sun, Z., et al. (2018) Water Adsorption and Its Impact on the Pore Structure Characteristics of Shale Clay. Applied Clay Science, 155, 126-138.
https://doi.org/10.1016/j.clay.2018.01.017
[54]  Kuila, U. and Prasad, M. (2013) Specific Surface Area and Pore‐Size Distribution in Clays and Shales. Geophysical Prospecting, 61, 341-362.
https://doi.org/10.1111/1365-2478.12028
[55]  Temga, J.P., Mache, J.R., Madi, A.B., Nguetnkam, J.P. and Bitom, D.L. (2019) Ceramics Applications of Clay in Lake Chad Basin, Central Africa. Applied Clay Science, 171, 118-132.
https://doi.org/10.1016/j.clay.2019.02.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133