Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.
References
[1]
Bergaya, F. and Lagaly, G. (2006) Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science. In: DevelopmentsinClayScience, Elsevier, 1-18. https://doi.org/10.1016/s1572-4352(05)01001-9
[2]
Belghazdis, M., Hachem, E. and Bendouch, A. (2022) Natural Clays from Morocco: Potentials and Applications. JournalofSustainabilityScienceandManagement, 17, 240-254. https://doi.org/10.46754/jssm.2022.02.017
[3]
Guggenheim, S. and Martin, R.T. (1995) Definition of Clay and Clay Mineral: Joint Report of the Aipea Nomenclature and CMS Nomenclature Committees. ClaysandClayMinerals, 43, 255-256. https://doi.org/10.1346/ccmn.1995.0430213
[4]
Oumar, K.O., Gilbert François, N.N., Bertrand, M.M., Nathanael, T., Constantin, B.E., Simon, M.J., et al. (2022) Mineralogical, Geochemical Characterization and Physicochemical Properties of Kaolinitic Clays of the Eastern Part of the Douala Sub-Basin, Cameroon, Central Africa. AppliedSciences, 12, Article No. 9143. https://doi.org/10.3390/app12189143
[5]
Kouakou, L.P.M.-., Kouamé, A.N., Doubi, B.I.H.G., Méité, N., Kangah, J.T., Zokou, E.P., et al. (2022) Characterization of Two Clay Raw Materials from Côte D’ivoire with a View to Enhancing Them in Eco-Construction. JournalofMineralsandMaterialsCharacterizationandEngineering, 10, 198-208. https://doi.org/10.4236/jmmce.2022.102016
[6]
Yaya, B.M., Diaka, S., Bakam, S. and Phillippe, B. (2023) Potential Applications of Débélé Clays (Guinea): Formulation of Ceramic Compositions and Hydraulic Binders. Journal of Natural Sciences, 3, 237-247.
[7]
Nshimiyimana, P., Fagel, N., Messan, A., Wetshondo, D.O. and Courard, L. (2020) Physico-Chemical and Mineralogical Characterization of Clay Materials Suitable for Production of Stabilized Compressed Earth Blocks. Construction and Building Materials, 241, Article ID: 118097. https://doi.org/10.1016/j.conbuildmat.2020.118097
[8]
Boufeev, Y.M., et al. (2010) Liés; Min. des Mines et de la Géologie Rép. de Guinée; Geoprospects Ltd; Univ. D’Etat de Moscou Lomonossov (Fac. Géol.)-Cona-kry-Moscow; Aquarel.
[9]
ONU-HABITAT (2020) Diagnostic du développement urbain, de la mise en oeuvre des politiques publiques et des défis de l’urbanisation durable en Guinée.
[10]
Barry, T.A. (2023) DATU 2022, Google Earth Projection WGS 84 UTM 29 N.
[11]
Diallo, I.D., Tilioua, A., Darraz, C., Alali, A. and Sidibe, D. (2023) Study and Analysis of Seasonal Soil Degradation in Lower Guinea and Forest Guinea. ResultsinEngineering, 19, Article ID: 101381. https://doi.org/10.1016/j.rineng.2023.101381
[12]
Tchokpon, K.G., Kaki, C., Adissin, G.L., Yessoufou, S. and Kourouma, M. (2019) Metasediments in the Alahina Sector and Associated Mineralization (North-Eastern Guinea). OpenJournalofGeology, 9, 897-918. https://doi.org/10.4236/ojg.2019.912097
[13]
Diallo, M.-O., et al. (2024) Geological Features of the Silakoro (Kintinian) Gold Deposit, SAG Concession-Siguiri Prefecture-Kankan-Guinea Administrative Region. WorldJournalofAdvancedResearchandReviews, 21, 843-857. https://doi.org/10.30574/wjarr.2024.21.1.2663
[14]
Vieira, C.M.F., Sánchez, R. and Monteiro, S.N. (2008) Characteristics of Clays and Properties of Building Ceramics in the State of Rio De Janeiro, Brazil. ConstructionandBuildingMaterials, 22, 781-787. https://doi.org/10.1016/j.conbuildmat.2007.01.006
[15]
Danish, A., Totiç, E., Bayram, M., Sütçü, M., Gencel, O., Erdoğmuş, E., et al. (2022) Assessment of Mineralogical Characteristics of Clays and the Effect of Waste Materials on Their Index Properties for the Production of Bricks. Materials, 15, Article No. 8908. https://doi.org/10.3390/ma15248908
[16]
Refaey, Y., Jansen, B., El-Shater, A., El-Haddad, A. and Kalbitz, K. (2015) Clay Minerals of Pliocene Deposits and Their Potential Use for the Purification of Polluted Wastewater in the Sohag Area, Egypt. GeodermaRegional, 5, 215-225. https://doi.org/10.1016/j.geodrs.2015.08.002
[17]
El-Shater, A. (2022) Crystallographic and Morphological Characteristics of Natural Kaolins, Aswan Region, Egypt. InternationalJournalofEarthScienceandGeology, 4, 121-130. https://doi.org/10.18689/ijeg-1000116
[18]
Mohamed, M.S., Amer, S.A.M. and Abdel-Kader, G.A. (2021) Clay Mineralogy in Relation to Geomorphic Aspects in Wadi El-Natroun Depression Soils, Western Deserts, Egypt. MenoufiaJournalofSoilScience, 6, 363-375. https://doi.org/10.21608/mjss.2021.213285
[19]
Fadil-Djenabou, S., Ndjigui, P. and Mbey, J.A. (2015) Mineralogical and Physicochemical Characterization of Ngaye Alluvial Clays (Northern Cameroon) and Assessment of Its Suitability in Ceramic Production. JournalofAsianCeramicSocieties, 3, 50-58. https://doi.org/10.1016/j.jascer.2014.10.008
[20]
Tsozué, D., Nzeugang, A.N., Mache, J.R., Loweh, S. and Fagel, N. (2017) Mineralogical, Physico-Chemical and Technological Characterization of Clays from Maroua (Far-North, Cameroon) for Use in Ceramic Bricks Production. JournalofBuildingEngineering, 11, 17-24. https://doi.org/10.1016/j.jobe.2017.03.008
[21]
Islam, A., Khan, Z., Hussain, M. and Uddin, M. (2022) Scanning Electron Microscopic Analysis of Clays in the Soils of Lower Atrai Basin of Bangladesh. DhakaUniversityJournalofBiologicalSciences, 31, 105-115. https://doi.org/10.3329/dujbs.v31i1.57920
[22]
Bakary Soro, S., Coulibaly, M., Paul Gauly, L., N’Dri, S.R., Sanou, A. and Trokourey, A. (2023) Characterization of Clay Materials from Côte D’ivoire: Possible Application for the Electrochemical Analysis. JournalofMaterialsScienceResearch, 12, 51-64. https://doi.org/10.5539/jmsr.v12n1p51
[23]
Ihekweme, G.O., Shondo, J.N., Orisekeh, K.I., Kalu-Uka, G.M., Nwuzor, I.C. and Onwualu, A.P. (2020) Characterization of Certain Nigerian Clay Minerals for Water Purification and Other Industrial Applications. Heliyon, 6, e03783. https://doi.org/10.1016/j.heliyon.2020.e03783
[24]
Kouadio, L.M., Lebouachera, S.E.I., Blanc, S., Sei, J., Miqueu, C., Pannier, F., et al. (2022) Characterization of Clay Materials from Ivory Coast for Their Use as Adsorbents for Wastewater Treatment. JournalofMineralsandMaterialsCharacterizationandEngineering, 10, 319-337. https://doi.org/10.4236/jmmce.2022.104023
[25]
Di Remigio, G., Rocchi, I. and Zania, V. (2021) Scanning Electron Microscopy and Clay Geomaterials: From Sample Preparation to Fabric Orientation Quantification. AppliedClayScience, 214, Article ID: 106249. https://doi.org/10.1016/j.clay.2021.106249
[26]
Chen, L., Zhao, Y., Bai, H., Ai, Z., Chen, P., Hu, Y., et al. (2020) Role of Montmorillonite, Kaolinite, or Illite in Pyrite Flotation: Differences in Clay Behavior Based on Their Structures. Langmuir, 36, 10860-10867. https://doi.org/10.1021/acs.langmuir.0c02073
[27]
Yao, X., Wu, Y., Jiang, J., Chen, X., Liu, D. and Hu, P. (2019) A Population Pharmacokinetic Study to Accelerate Early Phase Clinical Development for a Novel Drug, Teriflunomide Sodium, to Treat Systemic Lupus Erythematosus. EuropeanJournalofPharmaceuticalSciences, 136, Article ID: 104942. https://doi.org/10.1016/j.ejps.2019.05.020
[28]
Kormbaye, D., Mougabe, M., Haroun, A., Jonas, T. and Ngarmaim, N. (2024) Physicochimical, Mineralogical and Geotechnical Characterization of the Earth of the 9th District of the City of Ndjamena in Chad with a View to the Construction of Hydraulic Structures. InternationalJournalofAdvancedResearch, 12, 224-231. https://doi.org/10.21474/ijar01/18871
[29]
Garcia-Valles, M., Alfonso, P., Martínez, S. and Roca, N. (2020) Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain). Minerals, 10, Article No. 142. https://doi.org/10.3390/min10020142
[30]
Zaccaron, A., de Souza Nandi, V., Dal Bó, M., Peterson, M., Angioletto, E. and Bernardin, A.M. (2020) Characterization and Use of Clays and Argillites from the South of Santa Catarina State, Brazil, for the Manufacture of Clay Ceramics. ClayMinerals, 55, 172-183. https://doi.org/10.1180/clm.2020.23
[31]
Jozanikohan, G. and Abarghooei, M.N. (2022) The Fourier Transform Infrared Spectroscopy (FTIR) Analysis for the Clay Mineralogy Studies in a Clastic Reservoir. JournalofPetroleumExplorationandProductionTechnology, 12, 2093-2106. https://doi.org/10.1007/s13202-021-01449-y
[32]
Vahur, S., Kiudorv, L., Somelar, P., Cayme, J., Retrato, M.D.C., Remigio, R.J., et al. (2021) Quantitative Mineralogical Analysis of Clay-Containing Materials Using ATR-FT-IR Spectroscopy with PLS Method. AnalyticalandBioanalyticalChemistry, 413, 6535-6550. https://doi.org/10.1007/s00216-021-03617-9
[33]
Gourouza, M., et al. (2013) Caractérisation d’une argile mixte du Niger. African and Malagasy Council for Higher Education, 1, 36-37.
[34]
Ndzana, G.M., Huang, L., Wang, J.B. and Zhang, Z.Y. (2018) Characteristics of Clay Minerals in Soil Particles from an Argillic Horizon of Alfisol in Central China. AppliedClayScience, 151, 148-156. https://doi.org/10.1016/j.clay.2017.10.014
[35]
Wilson, M.J. (1994) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer.
[36]
Ravisankar, R., Naseerutheen, A., Rajalakshmi, A., Raja Annamalai, G. and Chandrasekaran, A. (2014) Application of Thermogravimetry-Differential Thermal Analysis (TG-DTA) Technique to Study the Ancient Potteries from Vellore Dist, Tamilnadu, India. SpectrochimicaActaPartA: MolecularandBiomolecularSpectroscopy, 129, 201-208. https://doi.org/10.1016/j.saa.2014.02.095
[37]
Mukasa-Tebandeke, I.Z., Ssebuwufu, P.J.M., Nyanzi, S.A., Schumann, A., Nyakairu, G.W.A., Ntale, M., et al. (2015) The Elemental, Mineralogical, IR, DTA and XRD Analyses Characterized Clays and Clay Minerals of Central and Eastern Uganda. AdvancesinMaterialsPhysicsandChemistry, 5, 67-86. https://doi.org/10.4236/ampc.2015.52010
[38]
Milošević, M., Dabić, P., Gulicovski, J., Dodevski, V. and Rosić, M. (2024) Mineralogical Characterization of Raw Clay from Rujište (Serbia) Used in Traditional Pottery Manufacture. Minerals, 14, Article No. 469. https://doi.org/10.3390/min14050469
[39]
Chakraborty, A.K. (2014) Phase Transformation of Kaolinite Clay. Springer.
[40]
Snellings, R., Almenares Reyes, R., Hanein, T., Irassar, E.F., Kanavaris, F., Maier, M., et al. (2022) Paper of RILEM TC 282-CCL: Mineralogical Characterization Methods for Clay Resources Intended for Use as Supplementary Cementitious Material. MaterialsandStructures, 55, Article No. 149. https://doi.org/10.1617/s11527-022-01973-1
[41]
Geng, J. and Sun, Q. (2018) Effects of High Temperature Treatment on Physical-Thermal Properties of Clay. ThermochimicaActa, 666, 148-155. https://doi.org/10.1016/j.tca.2018.06.018
[42]
Földvári, M. (2011) Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice. In: Occasional Papers of the Geological Institute of Hungary, No. 213, Geological Inst. of Hungary, 68-70.
[43]
Dewi, R., Agusnar, H., Alfian, Z. and Tamrin, (2018) Characterization of Technical Kaolin Using XRF, SEM, XRD, FTIR and Its Potentials as Industrial Raw Materials. Journal of Physics: Conference Series, 1116, Article ID: 042010. https://doi.org/10.1088/1742-6596/1116/4/042010
[44]
Salihu, S.A. and Suleiman, I.Y. (2018) Analyse comparative des caractéristiques physiques et chimiques de gisements d’argiles sélectionnés dans l’État de Kebbi. AuNigeria, 13, 163-173.
[45]
Diko-Makia, L. and Ligege, R. (2020) Composition and Technological Properties of Clays for Structural Ceramics in Limpopo (South Africa). Minerals, 10, Article No. 700. https://doi.org/10.3390/min10080700
[46]
Milošević, M., Logar, M. and Djordjević, B. (2020) Mineralogical Analysis of a Clay Body from Zlakusa, Serbia, Used in the Manufacture of Traditional Pottery. ClayMinerals, 55, 142-149. https://doi.org/10.1180/clm.2020.20
[47]
Ferrari, S. and Gualtieri, A. (2006) The Use of Illitic Clays in the Production of Stoneware Tile Ceramics. AppliedClayScience, 32, 73-81. https://doi.org/10.1016/j.clay.2005.10.001
[48]
Hussin, A., Rahman, A.H.A. and Ibrahim, K.Z. (2018) Mineralogy and Geochemistry of Clays from Malaysia and Its Industrial Application. IOPConferenceSeries: EarthandEnvironmentalScience, 212, Article ID: 012040. https://doi.org/10.1088/1755-1315/212/1/012040
[49]
Athman, S., Sdiri, A. and Boufatit, M. (2019) Spectroscopic and Mineralogical Characterization of Bentonite Clay (Ghardaïa, Algeria) for Heavy Metals Removal in Aqueous Solutions. InternationalJournalofEnvironmentalResearch, 14, 1-14. https://doi.org/10.1007/s41742-019-00232-6
[50]
Acevedo, N.I.A., Rocha, M.C.G. and Bertolino, L.C. (2017) Mineralogical Characterization of Natural Clays from Brazilian Southeast Region for Industrial Applications. Cerâmica, 63, 253-262. https://doi.org/10.1590/0366-69132017633662045
[51]
Boruah, A., Rasheed, A., Mendhe, V.A. and Ganapathi, S. (2018) Specific Surface Area and Pore Size Distribution in Gas Shales of Raniganj Basin, India. JournalofPetroleumExplorationandProductionTechnology, 9, 1041-1050. https://doi.org/10.1007/s13202-018-0583-8
[52]
Amari, A., Gannouni, H., Khan, M.I., Almesfer, M.K., Elkhaleefa, A.M. and Gannouni, A. (2018) Effect of Structure and Chemical Activation on the Adsorption Properties of Green Clay Minerals for the Removal of Cationic Dye. AppliedSciences, 8, Article No. 2302. https://doi.org/10.3390/app8112302
[53]
Feng, D., Li, X., Wang, X., Li, J., Sun, F., Sun, Z., et al. (2018) Water Adsorption and Its Impact on the Pore Structure Characteristics of Shale Clay. AppliedClayScience, 155, 126-138. https://doi.org/10.1016/j.clay.2018.01.017
[54]
Kuila, U. and Prasad, M. (2013) Specific Surface Area and Pore‐Size Distribution in Clays and Shales. GeophysicalProspecting, 61, 341-362. https://doi.org/10.1111/1365-2478.12028
[55]
Temga, J.P., Mache, J.R., Madi, A.B., Nguetnkam, J.P. and Bitom, D.L. (2019) Ceramics Applications of Clay in Lake Chad Basin, Central Africa. AppliedClayScience, 171, 118-132. https://doi.org/10.1016/j.clay.2019.02.003