Physical, Thermal and Mechanical Characterization of Epoxy/Rafia Vinifera Woven Composite Materials: Application to the Comfort of Boats in Tropical Areas
The mechanical, physical and thermal characterization of a composite made from woven raffia fiber vinifiera molded in epoxy resin intended for shipbuilding shows that the density (0.5 g/cm3 with a relative error of 0.05 g/cm3) of the composite produced is lower than that of wood used in this field. The material has low porosity (9.8%) and is less absorbent (12.61%) than wood. The result of the thermal conductivity test by the hot plane method shows that this composite can contribute to the internal thermal insulation (an example of thermal conductivity is 0.32W/m.K) of floating boats. The mechanical tests of compression (young modulus is 22.86 GPa), resilience (1.238 J/Cm2) and hardness (233.04 BH30-2.5/187.5-15s) show that this composite is much harder and more absorbent than many wood and bio-composite materials used in the construction of pleasure boats. The abrasion test (0.005349) shows that this composite could well resist friction with the beach.
References
[1]
Renjith, R. (2018) Literature Review on Marine Applications of Composite Materials (Review of Literature). https://doi.org/10.13140/RG.2.2.31010.73920
[2]
Rubino, F., Nisticò, A., Tucci, F. and Carlone, P. (2020) Marine Application of Fiber Reinforced Composites: A Review. JournalofMarineScienceandEngineering, 8, Article 26. https://doi.org/10.3390/jmse8010026
[3]
Fragassa, C. (2016) Effect of Natural Fibers and Bio-Resins on Mechanical Properties in Hybrid and Non-Hybrid Composites. VIII International Conference on “Times of Polymers and Composites”: From Aerospace to Nanotechnology, Naples, 19-23 June 2016, Article 020118. https://doi.org/10.1063/1.4949693
[4]
Fragassa, C. (2017) Marine Applications of Natural Fibre-Reinforced Composites: A Manufacturing Case Study. In: Pellicer, E., Nikolic, D., Sort, J., Baró, M., Zivic, F., Grujovic, N., et al., Eds., AdvancesinApplicationsofIndustrialBiomaterials, 21-47. https://doi.org/10.1007/978-3-319-62767-0
[5]
Davies, P. (2016) Environmental Degradation of Composites for Marine Structures: New Materials and New Applications. Philosophical Transactions of the Royal SocietyA:Mathematical, PhysicalandEngineeringSciences, 374, Article 20150272. https://doi.org/10.1098/rsta.2015.0272
[6]
Aisyah, H.A., Paridah, M.T., Sapuan, S.M., Khalina, A., Berkalp, O.B., Lee, S.H., etal. (2019) Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. International Journal of Polymer Science, 2019, Article ID: 5258621. https://doi.org/10.1155/2019/5258621
[7]
Azlin, M., Sapuan, S., Zuhri, M., Zainudin, E. and Ilyas, R. (2022) Thermal Stability, Dynamic Mechanical Analysis and Flammability Properties of Woven Kenaf/Polyester-Reinforced Polylactic Acid Hybrid Laminated Composites. Polymers, 14, Article 2690. https://doi.org/10.3390/polym14132690
[8]
Leonés, A., Peponi, L., García-Martínez, J. and Collar, E.P. (2022) Compositional Influence on the Morphology and Thermal Properties of Woven Non-Woven Mats of PLA/OLA/MgO Electrospun Fibers. Polymers, 14, Article 2092. https://doi.org/10.3390/polym14102092
[9]
Sofia, E. Putra, N. and Ali Gunawan, B. (2021) Evaluation of Indirect Evaporative Cooling Performance Integrated with Finned Heat Pipe and Luffa Cylindrica Fiber as Cooling/Wet Media. JournalofAdvancedResearchinExperimentalFluidMechanicsandHeatTransfer, 3, 16-25.
[10]
Qian, J., Li, Y., Xiang, Z., Cai, H. and Zhang, P. (2022) Effect of Weave Structure and Yarn Fineness on the Coolness and Thermal-Wet Comfort Properties of Woven Fabric. TextileResearchJournal, 92, 3782-3796. https://doi.org/10.1177/00405175221095891
[11]
Singh, M., Dodla, S., Gautam, R.K. and Srivastava, V.K. (2022) Effect of Load, Sliding Frequency, and Temperature on Tribological Properties of Graphene Nanoplatelets Coated Carbon Fiber Reinforced Polymer Composites. JournalofCompositeMaterials, 57, 121-132. https://doi.org/10.1177/00219983221140205
[12]
Sabaghi, M., Taheri‐Behrooz, F. and Salamat‐Talab, M. (2022) Critical Strain Energy Release Rate of Woven Carbon/Epoxy Composites Subjected to Thermal Cyclic Loading. PolymerComposites, 43, 6135-6149. https://doi.org/10.1002/pc.26919
[13]
Njeugna, E., Tagne, N.R.S., Drean, J., Fokwa, D. and Harzallah, O. (2012) Mechanical Characterization of Raffia Fibres from Raphia vinifera. InternationalJournalofMechanicsStructural, 3, 1-17.
[14]
Kendem Djoumessi, A., Sikame Tagne, R.N., Stanislas, T.T., Ngapgue, F. and Njeugna, E. (2022) Optimization of the Young’s Modulus of Woven Composite Material Made by RaphiaVinifiera Fiber/Epoxy. InternationalJournalforSimulationandMultidisciplinaryDesignOptimization, 13, Article No. 21. https://doi.org/10.1051/smdo/2022014
[15]
Sikame Tagne, N.R., Mbou, T.E., Harzallah, O., Ndapeu, D., Huisken, W., Nkemaja, D., etal. (2020) Physicochemical and Mechanical Characterization of Raffia vinifera Pith. AdvancesinMaterialsScienceandEngineering, 2020, Article ID: 8895913. https://doi.org/10.1155/2020/8895913
[16]
Agrawal, S.A. (2021) Simplified Measurement of Density of Irregular Shaped Composites Material Using Archimedes Principle by Mixing Two Fluids Having Different Densities. International Research Journal of Engineering and Technology, 8, 1005-1009.
[17]
Damfeu, J.C., Meukam, P., Jannot, Y. and Wati, E. (2017) Modelling and Experimental Determination of Thermal Properties of Local Wet Building Materials. EnergyandBuildings, 135, 109-118. https://doi.org/10.1016/j.enbuild.2016.11.022
[18]
Mbou Tiaya, E., Huisken Mejouyo, P.W., Ndema Ewane, P.A., Damfeu, C., Meukam, P. and Njeugna, E. (2023) Effect of Particle Sizes on Physical, Thermal and Mechanical Behavior of a Hybrid Composite with Polymer Matrix with Raffia Vinifera Cork and Bambusa Vulgaris. PolymerBulletin, 81, 275-295. https://doi.org/10.1007/s00289-023-04702-y
[19]
Lavanya, B. (2019) MHD Rotating Flow Through a Porous Medium with Heat and Mass Transfer. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 54, 221-231.
[20]
Damfeu, J.C., Meukam, P. and Jannot, Y. (2016) Modeling and Estimation of the Thermal Properties of Clusters Aggregates for Construction Materials: The Case of Clusters Aggregates of Lateritic Soil, Sand and Pouzzolan. InternationalJournalofHeatandMassTransfer, 102, 407-416. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.044
[21]
Damfeu, J.C., Meukam, P. and Jannot, Y. (2016) Modeling and Measuring of the Thermal Properties of Insulating Vegetable Fibers by the Asymmetrical Hot Plate Method and the Radial Flux Method: Kapok, Coconut, Groundnut Shell Fiber and Rattan. ThermochimicaActa, 630, 64-77. https://doi.org/10.1016/j.tca.2016.02.007
[22]
Pycka, S. and Roman, K. (2023) Comparison of Wood-Based Biocomposites with Polylactic Acid (PLA) Density Profiles by Desaturation and X-Ray Spectrum Methods. Materials, 16, Article 5729. https://doi.org/10.3390/ma16175729
[23]
Audu, S., Aje, S., Isuwa, T. and Aji, S. (2019) Investigation of the Impact, Hardness, Density and Water Absorption of Polypropylene Filled Doum Palm Shell Particles Composite. Journal of Information Engineering and Applications, 9, 28-37. https://doi.org/10.7176/jiea/8-1-04
[24]
Sikame Tagne, N.R., Njeugna, E., Fogue, M., Drean, J.-Y., Nzeukou, A. and Fokwa, D. (2014) Study of Water Absorption in Raffiavinifera Fibres from Bandjoun, Cameroon. TheScientificWorldJournal, 2014, Article ID: 912380. https://doi.org/10.1155/2014/912380
[25]
Youbi, S.B.T., Harzallah, O., Tagne, N.R.S., Huisken, P.W.M., Stanislas, T.T., Drean, J., etal. (2023) Effect of Raphia vinifera Fibre Size and Reinforcement Ratio on the Physical and Mechanical Properties of an Epoxy Matrix Composite: Micromechanical Modelling and Weibull Analysis. InternationalJournalofPolymerScience, 2023, Article ID: 5591108. https://doi.org/10.1155/2023/5591108
[26]
Kamaludin, N.H.I., Ismail, H., Rusli, A. and Ting, S.S. (2020) Thermal Behavior and Water Absorption Kinetics of Polylactic Acid/Chitosan Biocomposites. IranianPolymerJournal, 30, 135-147. https://doi.org/10.1007/s13726-020-00879-5
[27]
Nsouandélé, J.L., Bonoma, B., Simo Tagne, M. and Njomo, D. (2010) Determination of the Diffusion Coefficient of Water in the Tropical Woods. Physical and Chemical News, 54, 61-67.
[28]
Liu, D., Xia, K., Yang, R., Li, J., Chen, K. and Nazhad, M. (2012) Manufacturing of a Biocomposite with Both Thermal and Acoustic Properties. JournalofCompositeMaterials, 46, 1011-1020. https://doi.org/10.1177/0021998311414069
[29]
Trigui, A., Karkri, M. and Boudaya, C. (2014) Propriétés thermophysiques et comportement thermique des composites avec ou sans changement de phase. International Journal of Scientific Research & Engineering Technology, 2, 51-57.
[30]
Osseni, S.O.G., Apovo, B.D. and Ahouannou, C. (2016) Caractérisation thermique des mortiers de ciment dopés en fibres de coco par la méthode du plan chaud asymétrique à une mesure de temperature. Afrique Science, 12, 119-129.
[31]
Ngono Mvondo, R.R., Lissouck, R.O., Bell, S. and Meukam, P. (2021) Investigation on Mechanical and Thermal Properties Related to Hygroscopicity of Two African Hardwoods. WoodMaterialScience&Engineering, 17, 846-857. https://doi.org/10.1080/17480272.2021.1967447
[32]
Mvondo, R.R.N., Damfeu, J.C., Meukam, P. and Jannot, Y. (2019) Influence of Moisture Content on the Thermophysical Properties of Tropical Wood Species. HeatandMassTransfer, 56, 1365-1378. https://doi.org/10.1007/s00231-019-02795-8
[33]
Castegnaro, S., Gomiero, C., Battisti, C., Poli, M., Basile, M., Barucco, P., et al. (2017) A Bio-Composite Racing Sailboat: Materials Selection, Design, Manufacturing and Sailing. OceanEngineering, 133, 142-150. https://doi.org/10.1016/j.oceaneng.2017.01.017
[34]
Haramina, T., Hadžić, N. and Keran, Z. (2023) Epoxy Resin Biocomposites Reinforced with Flax and Hemp Fibers for Marine Applications. JournalofMarineScienceandEngineering, 11, Article 382. https://doi.org/10.3390/jmse11020382
[35]
Sassane, N. Boubendira, K. Benfoughal, A. Boughedir, N. and Hamzaoui, N. (2017) Study of the Resilience of a Composite Material Intended for the Orthopedic Prosthesis of a Tibia. 23ème Congrès Français de Mécanique, Lille, 28 Août au 1er Septembre 2017, 1-11.
[36]
De Almeida, O., Ferrero, J., Escalé, L. and Bernhart, G. (2018) Charpy Test Investigation of the Influence of Fabric Weave and Fibre Nature on Impact Properties of Peek-Reinforced Composites. JournalofThermoplasticCompositeMaterials, 32, 729-745. https://doi.org/10.1177/0892705718778744
[37]
Defo, N., Sikame, R.N.T., Huisken, W.P.M., Ndapeu, D., Tido, S.T., Bistac-Brogly, S., etal. (2023) Development and Characterization of Agglomerated Abrasives Based on Agro-Industrial By-Products. JournalofNaturalFibers, 20, Article 2178579. https://doi.org/10.1080/15440478.2023.2178579
[38]
Aisyah, H.A., Paridah, M.T., Sapuan, S.M., Ilyas, R.A., Khalina, A., Nurazzi, N.M., etal. (2021) A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers, 13, Article 471. https://doi.org/10.3390/polym13030471
[39]
Zsidai, L. and Kátai, L. (2016) Abrasive Wear and Abrasion Testing of PA 6 and PEEK Composites in Small-Scale Model System. Acta Polytechnica Hungarica, 13, 197-214. https://doi.org/10.12700/aph.13.6.2016.6.11
[40]
Güneş, A., Düzcükoğlu, H., Salur, E., Aslan, A. and Şahin, Ö.S. (2023) Investigation of Friction Coefficient Changes in Recycled Composite Materials under Constant Load. Lubricants, 11, Article 407. https://doi.org/10.3390/lubricants11090407
[41]
Atakan, R., Sezer, S. and Karakas, H. (2018) Development of Nonwoven Automotive Carpets Made of Recycled PET Fibers with Improved Abrasion Resistance. JournalofIndustrialTextiles, 49, 835-857. https://doi.org/10.1177/1528083718798637
[42]
Corradi, S., Isidori, T., Corradi, M., Soleri, F. and Olivari, L. (2009) Composite Boat Hulls with Bamboo Natural Fibres. InternationalJournalofMaterialsandProductTechnology, 36, 73-89. https://doi.org/10.1504/ijmpt.2009.027821
[43]
Basumatary, K.K., Mohanta, N. and Acharya, S.K. (2014) Effect of Fiber Loading on Abrasive Wear Behaviour of Ipomoea Carnea Reinforced Epoxy Composite. InternationalJournalofPlasticsTechnology, 18, 64-74. https://doi.org/10.1007/s12588-014-9065-0
[44]
Patnaik, P.K., Swain, P.T.R. and Biswas, S. (2018) Investigation of Mechanical and Abrasive Wear Behavior of Blast Furnace Slag‐Filled Needle‐Punched Nonwoven Viscose Fabric Epoxy Hybrid Composites. PolymerComposites, 40, 2335-2345. https://doi.org/10.1002/pc.25090
[45]
Kaliappan, P., Kesavan, R. and Vijaya Ramnath, B. (2017) Investigation on Effect of Fibre Hybridization and Orientation on Mechanical Behaviour of Natural Fibre Epoxy Composite. BulletinofMaterialsScience, 40, 773-782. https://doi.org/10.1007/s12034-017-1420-2
[46]
Vijayakumar, S. and Palanikumar, K. (2019) Mechanical Property Evaluation of Hybrid Reinforced Epoxy Composite. MaterialsToday:Proceedings, 16, 430-438. https://doi.org/10.1016/j.matpr.2019.05.111
[47]
Vijaya Ramnath, B., Junaid Kokan, S., Niranjan Raja, R., Sathyanarayanan, R., Elanchezhian, C., Rajendra Prasad, A., etal. (2013) Evaluation of Mechanical Properties of Abaca-jute-glass Fibre Reinforced Epoxy Composite. Materials&Design, 51, 357-366. https://doi.org/10.1016/j.matdes.2013.03.102