The fate of wetlands in arid regions has become a matter of concern in the context of global warming. The Inner Niger Delta (IND) has received increasing attention from researchers and others to explore whether this largest wetland in Africa will shrivel due to climate change and increasing water use. An essential study goal is to understand what has been done so far in the Research of Inner-Niger-Delta Wetland in order to address its future challenges. The present study provides a comprehensive analysis of climate related research on the IND wetland through bibliometric means to diagnosis the evolution, lag and hotspot of relevant features in the literature. Key aspects of analysis included 1) trends of IND wetland related research 2) nature of collaboration networks, 3) co-occurrence of keywords and 4) emerging themes related to IND wetland over the last three decades, between the years 1991-2022. The results indicate that the IND wetland gained momentum in 2000, peaking in 2013 and then in 2018. IND wetland research has, on average, reach 2.5 publication in 2000 and exceed 5 papers by 2017. The leading countries that have produced high numbers of published documents are in order, France, Nigeria, USA, Germany and Mali. Therefore, more efficient scientific collaboration among regional African institutions is recommended to face local perspectives. The identified emerging topics are Niger delta, climate change, floods and rivers. The variables considered in analyses are river discharge, evapotranspiration, water level and rain. Variables relevant to global temperature warming are missing, which implies that researches on Inner Niger Delta wetland are less focusing on climate change and variability analyses.
References
[1]
Allen, M. R., & Ingram, W. J. (2002). Constraints on Future Changes in Climate and the Hydrologic Cycle. Nature, 419, 224-232. https://doi.org/10.1038/nature01092
[2]
Berge-Nguyen, M., & Crétaux, J. (2015). Inundations in the Inner Niger Delta: Monitoring and Analysis Using MODIS and Global Precipitation Datasets. Remote Sensing, 7, 2127-2151. https://doi.org/10.3390/rs70202127
[3]
Bertoli-Barsotti, L., & Lando, T. (2017). The H-Index as an Almost-Exact Function of Some Basic Statistics. Scientometrics, 113, 1209-1228. https://doi.org/10.1007/s11192-017-2508-6
[4]
Baas, J., Schotten, M., Plume, A., Côté, G., & Karimi, R. (2020). Scopus as a Curated, High-Quality Bibliometric Data Source for Academic Research in Quantitative Science Studies. Quantitative Science Studies, 1, 377-386. https://doi.org/10.1162/qss_a_00019
[5]
Cubry, P., Tranchant-Dubreuil, C., Thuillet, A., Monat, C., Ndjiondjop, M., Labadie, K. et al. (2018). The Rise and Fall of African Rice Cultivation Revealed by Analysis of 246 New Genomes. Current Biology, 28, 2274-2282.e6. https://doi.org/10.1016/j.cub.2018.05.066
[6]
Dadson, S. J., Ashpole, I., Harris, P., Davies, H. N., Clark, D. B., Blyth, E. et al. (2010). Wetland Inundation Dynamics in a Model of Land Surface Climate: Evaluation in the Niger Inland Delta Region. Journal of Geophysical Research: Atmospheres, 115, D23114. https://doi.org/10.1029/2010jd014474
[7]
De Noray, M. (2003). Delta intérieur du fleuve Niger au Mali—Quand la crue fait la loi : l’organisation humaine et le partage des ressources dans une zone inondable à fort contraste. VertigO, 4, 1-9. https://doi.org/10.4000/vertigo.3796
[8]
Deptuck, M. E., Steffens, G. S., Barton, M., & Pirmez, C. (2003). Architecture and Evolution of Upper Fan Channel-Belts on the Niger Delta Slope and in the Arabian Sea. Marine and Petroleum Geology, 20, 649-676. https://doi.org/10.1016/j.marpetgeo.2003.01.004
[9]
Di Baldassarre, G. (2012). Floods in a Changing Climate: Inundation Modelling. Cambridge University Press. https://doi.org/10.1017/cbo9781139088411
[10]
Emerton, L., & Bos, E. (2004). Value: Counting Ecosystems as Water Infrastructure. IUCN. https://doi.org/10.2305/iucn.ch.2004.wani.3.en
[11]
Fleischmann, A., Siqueira, V., Paris, A., Collischonn, W., Paiva, R., Pontes, P. et al. (2018). Modelling Hydrologic and Hydrodynamic Processes in Basins with Large Semi-Arid Wetlands. Journal of Hydrology, 561, 943-959. https://doi.org/10.1016/j.jhydrol.2018.04.041
[12]
Funk, C., Michaelsen, J., & Marshall, M. (2012). Mapping Recent Decadal Climate Variations in Precipitation and Temperature across Eastern Africa and the Sahel. In B. Wardlow, M. Anderson, & J. Verdin (Eds.), Remote Sensing of Drought, Innovative Monitoring Approache (p. 25). Taylor and Francis.
[13]
Haque, M. M., Seidou, O., Mohammadian, A., Djibo, A. G., Liersch, S., Fournet, S. et al. (2019). Improving the Accuracy of Hydrodynamic Simulations in Data Scarce Environments Using Bayesian Model Averaging: A Case Study of the Inner Niger Delta, Mali, West Africa. Water, 11, Article 1766. https://doi.org/10.3390/w11091766
[14]
Haag, A. V. (2015). Coupling a Large-Scale Hydrological Model to a High-Resolution Hy-drodynamical Model, A Study of Floods within the Niger Inner Delta as a First Step towards a Potential Global Application. Master’s Thesis, Utrecht University.
[15]
Ingram, W. (2016). Extreme Precipitation: Increases All Round. Nature Climate Change, 6, 443-444. https://doi.org/10.1038/nclimate2966
[16]
Jobe, Z. R., Sylvester, Z., Parker, A. O., Howes, N., Slowey, N., & Pirmez, C. (2015). Rapid Adjustment of Submarine Channel Architecture to Changes in Sediment Supply. Journal of Sedimentary Research, 85, 729-753. https://doi.org/10.2110/jsr.2015.30
[17]
Kuper, M., Mullon, C., Poncet, Y., & Benga, E. (2003). Integrated Modelling of the Ecosystem of the Niger River Inland Delta in Mali. Ecological Modelling, 164, 83-102. https://doi.org/10.1016/s0304-3800(03)00006-1
[18]
Kuper, M., Mullon, C., Poncet, Y., Benga, E., Morand, P., Orange, D. et al. (2002). La modélisation intégrée d’un écosystème inondable: Le cas du delta intérieur du Niger. In Gestion intégrée des ressourcesnaturellesen zones inondablestropicales (pp. 773-798). IRD Éditions. https://doi.org/10.4000/books.irdeditions.8633
[19]
Lebel, T., & Ali, A. (2009). Recent Trends in the Central and Western Sahel Rainfall Regime (1990-2007). Journal of Hydrology, 375, 52-64. https://doi.org/10.1016/j.jhydrol.2008.11.030
[20]
Liersch, S., Cools, J., Kone, B., Koch, H., Diallo, M., Reinhardt, J. et al. (2012). Vulnerability of Rice Production in the Inner Niger Delta to Water Resources Management under Climate Variability and Change. Environmental Science & Policy, 34, 18-33. https://doi.org/10.1016/j.envsci.2012.10.014
[21]
Mahe, G., Orange, D., Mariko, A., & Bricquet, J. P. (2011). Estimation of the Flooded Area of the Inner Delta of the River Niger in Mali by Hydrological Balance and Satellite Data. In Hydro-Climatology: Variability and Change (Proceedings of symposium J-H02) (pp. 138-143). https://scholar.google.com/citations?view_op=view_citation&hl=fr&user=UHqALhIAAAAJ&cstart=20&pagesize=80&citation_for_view=UHqALhIAAAAJ:4JMBOYKVnBMC
[22]
Marie, J., Morand, P., & N’Djim, H. (2007). Avenir du fleuve Niger [The Niger River’s Future]. IRD.
[23]
Mariko, A. (2003). Caracterisation et suivi de la dynamique de l’inondation et du couvert vegetal dans le Delta interieur du Niger (Mali) par teledetection, vol. 2. Ph.D. Thesis, Universite Montpellier.
[24]
Marx, A., Dusek, J., Jankovec, J., Sanda, M., Vogel, T., van Geldern, R., Hartmann, J., & Barth, J. A. C. (2017). A Review of CO2 and Associated Carbon Dynamics in Headwater Streams: A Global Perspective. Reviews of Geophysics, 55, 560-585, https://doi.org/10.1002/2016RG000547
[25]
Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being: Wet-Lands and Water Synthesis. World Resources Institute. http://www.maweb.org/documents/document.358.aspx.pdf
[26]
Mitsch, W. J., & Gosselink, J. G. (1993). Wetlands (2nd ed.). Van Nostrand Rein-hold.
[27]
Moorehead, R. (1997). Structural Chaos: Community and State Management of Common Property in Mali. IIED.
[28]
Neal, J., Schumann, G., & Bates, P. (2012). A Subgrid Channel Model for Simulating River Hydraulics and Floodplain Inundation over Large and Data Sparse Areas. Water Resources Research, 48, W11506. https://doi.org/10.1029/2012wr012514
[29]
Normandin, C., Frappart, F., Diepkilé, A. T., Marieu, V., Mougin, E., Blarel, F. et al. (2018). Evolution of the Performances of Radar Altimetry Missions from ERS-2 to Sentinel-3a over the Inner Niger Delta. Remote Sensing, 10, Article 833. https://doi.org/10.3390/rs10060833
[30]
Ogbonda, K. H., Aminigo, R. E., & Abu, G. O. (2007). Influence of Temperature and pH on Biomass Production and Protein Biosynthesis in a Putative Spirulina sp. Bioresource Technology, 98, 2207-2211. https://doi.org/10.1016/j.biortech.2006.08.028
[31]
Ogilvie, A., Belaud, G., Delenne, C., Bailly, J., Bader, J., Oleksiak, A. et al. (2015). Decadal Monitoring of the Niger Inner Delta Flood Dynamics Using MODIS Optical Data. Journal of Hydrology, 523, 368-383. https://doi.org/10.1016/j.jhydrol.2015.01.036
[32]
Pedinotti, V., Boone, A., Decharme, B., Crétaux, J. F., Mognard, N., Panthou, G. et al. (2012). Evaluation of the ISBA-TRIP Continental Hydrologic System over the Niger Basin Using in Situ and Satellite Derived Datasets. Hydrology and Earth System Sciences, 16, 1745-1773. https://doi.org/10.5194/hess-16-1745-2012
[33]
Pilkington, A., & Meredith, J. (2009). The Evolution of the Intellectual Structure of Operations Management—1980-2006: A Citation/Co-Citation Analysis. Journal of Operations Management, 27, 185-202. https://doi.org/10.1016/j.jom.2008.08.001
[34]
Pritchard, A. (1969). Statistical Bibliography or Bibliometrics? J-Doc, 25, 348-349.
[35]
Ramos‐Rodríguez, A., & Ruíz‐Navarro, J. (2004). Changes in the Intellectual Structure of Strategic Management Research: A Bibliometric Study of the strategic Management Journal, 1980–2000. Strategic Management Journal, 25, 981-1004. https://doi.org/10.1002/smj.397
[36]
Reyment, R. A. (1966). Preliminary Observations of Gastropod Predation in the Western Niger Delta. Palaeogeography, Palaeoclimatology, Palaeoecology, 2, 81-102. https://doi.org/10.1016/0031-0182(66)90010-1
[37]
Schröder, S., Springer, A., Kusche, J., Uebbing, B., Fenoglio-Marc, L., Diekkrüger, B. et al. (2019). Niger Discharge from Radar Altimetry: Bridging Gaps between Gauge and Altimetry Time Series. Hydrology and Earth System Sciences, 23, 4113-4128. https://doi.org/10.5194/hess-23-4113-2019
[38]
Sultan, N., Marsset, B., Ker, S., Marsset, T., Voisset, M., Vernant, A. M. et al. (2010). Hydrate Dissolution as a Potential Mechanism for Pockmark Formation in the Niger Delta. Journal of Geophysical Research: Solid Earth, 115, B08101. https://doi.org/10.1029/2010jb007453
[39]
van Vuuren, D. P., Lucas, P. L., & Hilderink, H. (2007). Downscaling Drivers of Global Environmental Change: Enabling Use of Global SRES Scenarios at the National and Grid Levels. Global Environmental Change, 17, 114-130. https://doi.org/10.1016/j.gloenvcha.2006.04.004
[40]
WWF (2008). Inner Niger Delta flooded Savanna. Encyclopaedia of Earth, Environmental Information Coalition, National Council for Science and the Environment.
[41]
Zwarts, L., Beukering, P. V., Koné, B., Wymenga, E., & Taylor, D. (2006). The Economic and Ecological Effects of Water Management Choices in the Upper Niger River: Development of Decision Support Methods. International Journal of Water Resources Development, 22, 135-156. https://doi.org/10.1080/07900620500405874
[42]
Zwarts, L., van Beukering, P., Kone, B., & Wymenga, E. (2005). The Niger, a Lifeline. Effective Water Management in the Upper Niger Basin. Altenburg & Wymenga Ecol-ogisch Onderzoek BV.