This paper aims to study the GARCH-X model based on high-frequency data. Building upon the existing research on the selection criteria for optimal volatility representation and parameter estimation methods for high-frequency data GARCH(1,1) models, we extend the model to incorporate exogenous variables within high-frequency data GARCH(1,1) models and conduct both model simulations and empirical validation. The empirical research results show that in the study of the returns of the CSI 300 Index, including the 500 Index return rate as an exogenous variable can better explain the volatility of the return rate, thereby demonstrating the practical applicability of the model in real-world applications.
References
[1]
Apergis, N., & Rezitis, A. (2011). Food Price Volatility and Macroeconomic Factors: Evidence from GARCH and GARCH-X Estimates. Journal of Agricultural and Applied Economics, 43, 95-110. https://doi.org/10.1017/s1074070800004077
[2]
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
[3]
Engle, R. F., Lilien, D. M., & Robins, R. P. (1987). Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model. Econometrica, 55, 391-407. https://doi.org/10.2307/1913242
[4]
Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance, 48, 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
[5]
Han, H. (2015). Asymptotic Properties of GARCH-X Processes. Journal of Financial Econometrics, 13, 188-221. https://doi.org/10.1093/jjfinec/nbt023
[6]
Han, H., & Kristensen, D. (2014). Asymptotic Theory for the QMLE in GARCH-X Models with Stationary and Nonstationary Covariates. Journal of Business & Economic Statistics, 32, 416-429. https://doi.org/10.1080/07350015.2014.897954
[7]
Hansen, P. R., Huang, Z., & Shek, H. H. (2012). Realized GARCH: A Joint Model for Returns and Realized Measures of Volatility. Journal of Applied Econometrics, 27, 877-906. https://doi.org/10.1002/jae.1234
[8]
Iqbal, F., & Mukherjee, K. (2012). A Study of Value-at-Risk Based on M-Estimators of the Conditional Heteroscedastic Models. Journal of Forecasting, 31, 377-390. https://doi.org/10.1002/for.1224
[9]
Lee, O. (2017). Some Limiting Properties for GARCH (p, q)-X Processes. Journal of the Korean Data and Information Science Society, 28, 697-707.
[10]
Li, L. L., & Zhang, X. F. (2021). Daily Frequency GARCH Model Estimation Based on High Frequency Data. Journal of Guangxi Normal University (Natural Science Edition), 39, 68-78.
[11]
Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59, 347-370. https://doi.org/10.2307/2938260
[12]
Qian, Z., & Xu, X. (2023). An Option Valuation Formula for Stochastic Volatility Driven by GARCH Processes. Journal of Mathematical Finance, 13, 221-247. https://doi.org/10.4236/jmf.2023.132015
[13]
Singvejsakul, J., Chaovanapoonphol, Y., & Limnirankul, B. (2021). Modeling the Price Volatility of Cassava Chips in Thailand: Evidence from Bayesian GARCH-X Estimates. Economies, 9, Article 132. https://doi.org/10.3390/economies9030132
[14]
Straumann, D., & Mikosch, T. (2006). Quasi-Maximum-Likelihood Estimation in Conditionally Heteroscedastic Time Series: A Stochastic Recurrence Equations Approach. The Annals of Statistics, 34, 2449-2495. https://doi.org/10.1214/009053606000000803
[15]
Visser, M. P. (2009). Volatility Proxies and GARCH Models. University of Amsterdam.
[16]
Visser, M. P. (2011). GARCH Parameter Estimation Using High-Frequency Data. Journal of Financial Econometrics, 9, 162-197. https://doi.org/10.1093/jjfinec/nbq017
[17]
Wang, M., Chen, Z., & Wang, C. D. (2018). Composite Quantile Regression for GARCH Models Using High-Frequency Data. Econometrics and Statistics, 7, 115-133. https://doi.org/10.1016/j.ecosta.2016.11.004
[18]
Wu, X., Zhao, A., & Cheng, T. (2023). A Real-Time GARCH-MIDAS Model. Finance Research Letters, 56, Article 104103. https://doi.org/10.1016/j.frl.2023.104103