From the ethyl acetate extract of the medicinal plant Graptophyllumglandulosum Turrill, five known compounds: Lupeol (1), Oleanolic acid (2), Chrysoeriol (3), N-methyl-isonicotinamide (4) and β-sitosterol 3-O-β-D-glucopyranoside (5) were isolated. In addition, oxidation reactions carried out on lupeol (1) yielded two semi-synthetic compounds, including a previously unreported: (20R)-formyloxy-29-nor-lupan-3-one (1b) and one other well-known Lupenone (1a). The structures of natural and semi-synthetic compounds were determined by analysis of 1D-(1H, 13C), 2D-(COSY, HSQC and HMBC) NMR data in conjunction with mass spectrometry (TOFESIMS and HR-TOFESIMS) and by comparison with the reported data. The evaluation of antimicrobial activities of substrate (1) as well as semi-synthetic derivatives (1a and 1b) using broth microdilution method showed that compound 1b was the most active (16 ≤ MIC ≤ 32 μg/mL) against Escherichia coli, Staphylococcus aureus and Candida albicans compared to the starting material 1 (16 ≤ MIC ≤ 64 μg/mL) and derivative 1a (32 ≤ MIC ≤ 64 μg/mL).
References
[1]
Barker, R.M. (1986) Graptophyllum Nees. Journal of the Adelaide Botanic Gardens, 9, 156-166.
[2]
Ngoufack Tagousop, C., Ngnokam, D., Harakat, D. and Voutquenne-Nazabadioko, L. (2017) Three New Flavonoid Glycosides from the Aerial Parts of Graptophyllumgrandulosum Turril (Acanthaceae). Phytochemistry Letters, 19, 172-175. https://doi.org/10.1016/j.phytol.2016.12.035
[3]
Tagousop, C.N., Tamokou, J., Ekom, S.E., Ngnokam, D. and Voutquenne-Nazabadioko, L. (2018) Antimicrobial Activities of Flavonoid Glycosides from Graptophyllumgrandulosum and Their Mechanism of Antibacterial Action. BMC Complementary and Alternative Medicine, 18, Article No. 252. https://doi.org/10.1186/s12906-018-2321-7
[4]
Silveira, G.P., Nome, F., Gesser, J.C., Sá, M.M. and Terenzi, H. (2006) Estratégias utilizadas no combate a resistência bacteriana. Química Nova, 29, 844-855. https://doi.org/10.1590/s0100-40422006000400037
[5]
Al-Fatimi, M., Wurster, M., Schröder, G. and Lindequist, U. (2007) Antioxidant, Antimicrobial and Cytotoxic Activities of Selected Medicinal Plants from Yemen. Journal of Ethnopharmacology, 111, 657-666. https://doi.org/10.1016/j.jep.2007.01.018
[6]
Atta-ur-Rahman, Zareen, S., Choudhary, M.I., Ngounou, F.N., Yasin, A. and Parvez, M. (2002) Terminalin A, a Novel Triterpenoid from Terminalia glaucescens. Tetrahedron Letters, 43, 6233-6236. https://doi.org/10.1016/s0040-4039(02)01330-8
[7]
Devendra Rao, S., Nageswara Rao, B., Uma Devi, P. and Karteek Rao, A. (2017) Isolation of Lupeol, Design and Synthesis of Lupeol Derivatives and Their Biological Activity. Oriental Journal of Chemistry, 33, 173-180. https://doi.org/10.13005/ojc/330119
[8]
Haque, S., Nawrot, D.A., Alakurtti, S., Ghemtio, L., Yli-Kauhaluoma, J. and Tammela, P. (2014) Screening and Characterisation of Antimicrobial Properties of Semisynthetic Betulin Derivatives. PLOS ONE, 9, e102696. https://doi.org/10.1371/journal.pone.0102696
[9]
Tagousop, C.N., Tamokou, J., Feugap, L.D.T., Harakat, D., Voutquenne-Nazabadioko, L. and Ngnokam, D. (2021) New Hemisynthetic Oleanane Saponin with Antimicrobial Activities. Advances in Biological Chemistry, 11, 1-11. https://doi.org/10.4236/abc.2021.111001
[10]
Tsamo, D.L.F., Tagousop, C.N., Dongmo, A.J.N., Voutquenne-Nazabadioko, L. and Ngnokam, D. (2024) Semisynthetic Derivatives of Sissotrin Isolated from Trifolium baccarinii Chiov. (Fabaceae) and Evaluation of Their Antibacterial Activities. Advances in Biological Chemistry, 14, 27-39. https://doi.org/10.4236/abc.2024.141003
[11]
Ankita, W., Srivastava, R.S., Pranay, W., Awani, R. and Shivam, S. (2015) Lupeol as a Magical Drug. Pharmaceutical and Biological Evaluations, 2, 142-151.
[12]
Ankita, W., Srivastava, R.S. and Rai, A.K. (2016) Synthesis and Antitubercular Activity of Novel Lupeol Derivatives. Der Pharmacia Lettre, 8, 79-85.
[13]
Silva, A.T.M.E., Magalhães, C.G., Duarte, L.P., Mussel, W.D.N., Ruiz, A.L.T.G., Shiozawa, L., et al. (2018) Lupeol and Its Esters: NMR, Powder XRD Data and in Vitro Evaluation of Cancer Cell Growth. Brazilian Journal of Pharmaceutical Sciences, 53, e00251. https://doi.org/10.1590/s2175-97902017000300251
[14]
Nistor, G., Trandafirescu, C., Prodea, A., Milan, A., Cristea, A., Ghiulai, R., et al. (2022) Semisynthetic Derivatives of Pentacyclic Triterpenes Bearing Heterocyclic Moieties with Therapeutic Potential. Molecules, 27, Article 6552. https://doi.org/10.3390/molecules27196552
[15]
Chandrasekaran, S. and Ganesh, V. (2014) 7.10 Oxidation Adjacent to Oxygen of Alcohols by Chromium Reagents. Comprehensive Organic Synthesis II, 7, 277-294. https://doi.org/10.1016/b978-0-08-097742-3.00711-4
[16]
Clinical and Laboratory Standards Institute (1997) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard (CLSI Document M27-A).
[17]
Clinical and Laboratory Standards Institute (2009) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Eighth Edition (CLSI Document M07-A8).
[18]
Shwe, H.H., Win, K.K., Moe, T.T., Myint, A.A. and Win, T. (2019) Isolation and Structural Characterization of Lupeol from the Stem Bark of Diospyros ehretioides Wall. IEEE-SEM, 7, 104-144.
[19]
Seebacher, W., Simic, N., Weis, R., Saf, R. and Kunert, O. (2003) Complete Assignments of 1H and 13C NMR Resonances of Oleanolic Acid, 18α-Oleanolic Acid, Ursolic Acid and Their 11-Oxo Derivatives. Magnetic Resonance in Chemistry, 41, 636-638. https://doi.org/10.1002/mrc.1214
[20]
Park, Y., Moon, B., Yang, H., Lee, Y., Lee, E. and Lim, Y. (2007) Complete Assignments of NMR Data of 13 Hydroxymethoxyflavones. Magnetic Resonance in Chemistry, 45, 1072-1075. https://doi.org/10.1002/mrc.2063
[21]
Correia, F.C.S., Targanski, S.K., Bomfim, T.R.D., da Silva, Y.S.A.D., et al. (2020) Chemical Constituents and Antimicrobial Activity of Branches and Leaves of Cordia Insignis (Boraginaceae). Revista Virtual de Química, 12, 809-816. https://doi.org/10.21577/1984-6835.20200063
[22]
Puapairoj, P., Naengchomnong, W., Kijjoa, A., Pinto, M.M., Pedro, M., Nascimento, M.S., et al. (2005) Cytotoxic Activity of Lupane-Type Triterpenes from Glochidionsphaerogynum and Glochidioneriocarpum Two of Which Induce Apoptosis. Planta Medica, 71, 208-213. https://doi.org/10.1055/s-2005-837818
[23]
Corbett, R.E., Cong, A.N.T., Wilkins, A.L. and Thomson, R.A. (1985) Lichens and Fungi. Part 17. the Synthesis and Absolute Configuration at C-20 of the (R)-and (s)-Epimers of Some 29-Substituted Lupane Derivatives and of Some 30-Norlupan-20-Ol Derivatives and the Crystal Tructure of (20r)-3β-Acetoxylupan-29-ol. Journal of the Chemical Society, Perkin Transactions 1, 1985, 2051-2056. https://doi.org/10.1039/p19850002051
[24]
Corbett, R., Cong, A., Holland, P. and Wilkins, A. (1987) Lichens and Fungi. XVIII. Extractives from Pseudocyphellaria Rubella. Australian Journal of Chemistry, 40, 461-468. https://doi.org/10.1071/ch9870461
[25]
Carbonelle, B., Denis, F., Marmonier, A., Pinon, G. and Vorgue, R. (1987) Techniques Usuelles de Bact eriologie M edicale. Edition SIMEP, 330.
[26]
Pacheco, A.G., Alcântara, A.F.C., Abreu, V.G.C. and Corrêa, G.M. (2012) Relationships between Chemical Structure and Activity of Triterpenes against Gram-Positive and Gram-Negative Bacteria. In: Bobbarala, V., Ed., A Search for Antibacterial Agents, IntechOpen, 1-24.
[27]
Gallo, M.B.C. and Sarachine, M.J. (2009) Biological Activities of Lupeol. International Journal of Pharmaceutical Sciences, 3, 46-66.