全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancing Coating Inoculation for Improved Nitrogen-Fixing Efficiency of Rhizobia in Soybean (Glycine max L.)

DOI: 10.4236/ajps.2025.162020, PP. 245-262

Keywords: Formulation, Biofertilizer, N-Fixing, Rhizobia, Coating, Growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plant biofertilization involves introducing compounds containing living mi-croorganisms into the coating medium to sustainably enhance plant production and soil health. This is a complex process that undergoes multiple stages of development before yielding a final product. The final biofertilizer is used by legumes-protein-rich crops in symbiosis with rhizobia to enable biological nitrogen fixation increasing natural soil fertility. This study aims to determine the optimal formulation of a rhizobial biofertilizer to improve the performance of soybean (Glycine max L. cv. Docko). To this end, soybean seeds obtained from IRAD were coated with different formulations derived from locally sourced materials. Palm kernel oil was used as an adhesive in one group, while corn powder served as an adhesive in another. The coated seeds were then sown in the field. The results indicate that the combination of pigeon pea powder + sugarcane molasses, with palm kernel oil as an adhesive, produced the best nodulation (nitrogen fixation). This formulation also led to significant improvements in growth (+350%) and total nitrogen content (+1100%) compared to the bacterial broth inoculum control (B0) (P ≤ 0.01). These findings represent a significant advancement in improving nitrogen-fixing bacterial inoculants and enhancing soil fertility for the sustainable cultivation of soybeans in this tropical soil.

References

[1]  Bhattacharyya, P.N. and Jha, D.K. (2011) Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350.
https://doi.org/10.1007/s11274-011-0979-9
[2]  Herrmann, L. and Lesueur, D. (2013) Challenges of Formulation and Quality of Biofertilizers for Successful Inoculation. Applied Microbiology and Biotechnology, 97, 8859-8873.
https://doi.org/10.1007/s00253-013-5228-8
[3]  Kumar, S., Diksha,, Sindhu, S.S. and Kumar, R. (2022) Biofertilizers: An Ecofriendly Technology for Nutrient Recycling and Environmental Sustainability. Current Research in Microbial Sciences, 3, Article 100094.
https://doi.org/10.1016/j.crmicr.2021.100094
[4]  Zhang, J., Cook, J., Nearing, J.T., Zhang, J., Raudonis, R., Glick, B.R., et al. (2021) Harnessing the Plant Microbiome to Promote the Growth of Agricultural Crops. Microbiological Research, 245, Article 126690.
https://doi.org/10.1016/j.micres.2020.126690
[5]  Fasusi, O.A., Cruz, C. and Babalola, O.O. (2021) Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture, 11, Article 163.
https://doi.org/10.3390/agriculture11020163
[6]  Hara, F.A.D.S. and Oliveira, L.A.D. (2005) Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos de Iranduba, Amazonas. Pesquisa Agropecuária Brasileira, 40, 667-672.
https://doi.org/10.1590/s0100-204x2005000700007
[7]  Lupwayi, N.Z., Clayton, G.W. and Rice, W.A. (2006) Rhizobial Inoculants for Legume Crops. Journal of Crop Improvement, 15, 289-321.
https://doi.org/10.1300/j411v15n02_09
[8]  Ben Rebah, F., Prévost, D., Yezza, A., et al. (2007) Agro-Industrial Waste Materials and Wastewater Sludge for Rhizobial Inoculant Production: A Review. Bioresource Technology, 98, 3535-3546.
https://doi.org/10.1016/j.biortech.2006.11.066
[9]  O’Callaghan, M. (2016) Microbial Inoculation of Seed for Improved Crop Performance: Issues and Opportunities. Applied Microbiology and Biotechnology, 100, 5729-5746.
https://doi.org/10.1007/s00253-016-7590-9
[10]  Verma, M., Mishra, J. and Arora, N.K. (2018) Plant Growth-Promoting Rhizobacteria: Diversity and Applications. In: Environmental Biotechnology: For Sustainable Future, Springer, 129-173.
https://doi.org/10.1007/978-981-10-7284-0_6
[11]  Herridge, D.F., Peoples, M.B. and Boddey, R.M. (2008) Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant and Soil, 311, 1-18.
https://doi.org/10.1007/s11104-008-9668-3
[12]  Herrmann, L., Atieno, M., Brau, L., et al. (2015) Microbial Quality of Commercial Inoculants to Increase BNF and Nutrient Use Efficiency. In: de Bruijn, F.J., Ed., Biological Nitrogen Fixation, Wiley-Blackwell, 1031-1040.
https://doi.org/10.1002/9781119053095.ch101
[13]  Catroux, G., Hartmann, A. and Revellin, C. (2001) Trends in Rhizobial Inoculant Production and Use. Plant and Soil, 230, 21-30.
https://doi.org/10.1023/a:1004777115628
[14]  Yinhui, L., Rong, X.G., Zhangxiong, L., et al. (2008) Genetic Structure and Diversity of Cultivated Soybean (Glycine max (L.) Merr) in China. Theoric Applied and Genetic, 117, 857-871.
https://doi.org/10.1016/S2095-3119(15)61289-8
[15]  Doré, C. and Varoquaux, F. (2006) History and Improvement of Fifty Cultivated Plants. Institut national de la recherche agronomique.
[16]  FAOSTAT (2022) Base de données statistiques agricoles.
[17]  FAO (2015) Statistiques de production alimentaire.
[18]  Taffouo, V.D., Meguekam, T.L., Amougou, A., et al. (2010) Salt Stress Effects on Germination, Plant Growth and Accumulation of Metabolites in Five Leguminous Plants. Journal of Agricultural Science and Technology, 4, 27-33.
[19]  Nwaga, D., Jansa, J., Angue, M.A. and Frossard, E. (2010) The Potential of Soil Beneficial Micro-Organisms for Slash-And-Burn Agriculture in the Humid Forest Zone of Sub-Saharan Africa. In: Soil Biology, Springer, 81-107.
https://doi.org/10.1007/978-3-642-05076-3_5
[20]  Bahdjolbe, M., Sontsa-Donhoung, A., Abdouraman, H., Wade, A., Tobolbaï, R., Okiobe, S.T., et al. (2023) Isolation, Characterization, and Selection of Bacterial Endophytes from Soybean (Glycine Max) Nodules and Roots in Some Soils of Cameroon for Promoting Growth of Forage Legume Plants. Microbiology Research Journal International, 33, 51-67.
https://doi.org/10.9734/mrji/2023/v33i11-121417
[21]  Pauwels, J.M., Van Ranst, E., Verloo, M., et al. (1992) Soil Science Laboratory Manual. Methods of Soil and Plant Analysis, Equipment, Management of Glassware and Chemicals. Agricultural Publications, No. 28, 180 p.
[22]  Vincent, J.M. (1970) A Manual for Practical Study of Root Nodule Bacteria. Blackwell Scientific Publishers, 164.
[23]  Pastor-Bueis, R., Sánchez-Cañizares, C., James, E.K. and González-Andrés, F. (2019) Formulation of a Highly Effective Inoculant for Common Bean Based on an Autochthonous Elite Strain of Rhizobium Leguminosarum Bv. Phaseoli, and Genomic-Based Insights into Its Agronomic Performance. Frontiers in Microbiology, 10, Article 2724.
https://doi.org/10.3389/fmicb.2019.02724
[24]  Somasegaran, P. and Hoben, H.J. (1985) Methods in Legume-Rhizobium Technology. NifTAL Project and MIRCEN. Department of Agronomy, 2nd Soil Science Hawaii Institute Tropical Agriculture Human Research, University of Hawaii at Manoa.
[25]  Arora, N.K., Tiweri, S. and Singh, R. (2014) Comparative Study of Different Carriers Innoculated with Ndule Forming and Free-Living Plant Growth Promoting Bacteria Suitable for Subtainable Agricuture. Journal Plant Pathology Microbiology, 5, Article 229.
https://doi.org/10.4172/2157-7471.1000229
[26]  Nwaga, D. and Ngo Nkot, L. (1998) In Vitro Tolerance of Rhizobia Isolated from Vigna unguiculata in Cameroon Compared to Bradyrhizobium japonicum. Cahiers Agricultures, 7, 407-410.
[27]  Ngo Mimb, J.A., Boyomo, O., Ngo Nkot, L., et al. (2014) The Use of Local Substrates in the Production of Legume Nodulating Bacteria Inoculants for SubSaharan Africa: Preliminary Results. Journal of Applied Biosciences, 75, 6183-6191.
http://dx.doi.org/10.4314/jab.v75i1.2
[28]  Kumar, N., Krishnamoorty, V., Nalina, L., et al. (2002) A New Factor for Estimating Total Leaf Area in Banana. Revista Brasileira de Fruticultura, 44, 42-43.
https://doi.org/10.1590/0100-29452022119.
[29]  Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W. and Strickland, J.D.H. (1965) Fluorometric Determination of Chlorophyll. ICES Journal of Marine Science, 30, 3-15.
https://doi.org/10.1093/icesjms/30.1.3
[30]  Choula, F., Meguekam, T.L. and Wamba, F.O. (2023) Effect of Salinity on Physiological, and Biochemical Traits of Two Forage Species: Albizia lebbeck and Faidherbia albida. African Journal of Agricultural Research, 19, 537-546.
https://doi.org/10.5897/AJAR2023.16314
[31]  Devani, M.B., Shishoo, C.J., Shah, S.A. and Suhagia, B.N. (1989) Spectrophotometric Method for Microdetermination of Nitrogen in Kjeldahl Digest. Journal of AOAC International, 72, 953-956.
https://doi.org/10.1093/jaoac/72.6.953
[32]  Malusá, E., Sas-Paszt, L. and Ciesielska, J. (2012) Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. The Scientific World Journal, 2012, 1-12.
https://doi.org/10.1100/2012/491206
[33]  Raimi, A., Roopnarain, A. and Adeleke, R. (2021) Biofertilizer Production in Africa: Current Status, Factors Impeding Adoption and Strategies for Success. Scientific African, 11, e00694.
https://doi.org/10.1016/j.sciaf.2021.e00694
[34]  Sahu, P.K. and Brahmaprakash, G.P. (2016) Formulations of Biofertilizers—Approaches and Advances. In: Microbial Inoculants in Sustainable Agricultural Productivity, Springer, 179-198.
https://doi.org/10.1007/978-81-322-2644-4_12
[35]  Erdiansyah, I., Taufika, R., Widodo, T., Damanhuri Jannah, D.D. and Prayitno, H. (2022) Viability of Biofertilizer Bacteria Rhizobium spp Based on Household Waste. IOP Conference Series: Earth and Environmental Science, 980, Article 012009.
https://doi.org/10.1088/1755-1315/980/1/012009
[36]  Arfarita, N., Imai, T. and Prayogo, C. (2022) Utilization of Various Organic Wastes as Liquid Biofertilizer Carrier Agents towards Viability of Bacteria and Green Bean Growth. Journal of Tropical Life Science, 12, 1-10.
[37]  Lobo, C.B., Juárez Tomás, M.S., Viruel, E., Ferrero, M.A. and Lucca, M.E. (2019) Development of Low-Cost Formulations of Plant Growth-Promoting Bacteria to Be Used as Inoculants in Beneficial Agricultural Technologies. Microbiological Research, 219, 12-25.
https://doi.org/10.1016/j.micres.2018.10.012
[38]  Bashan, Y., de-Bashan, L.E., Prabhu, S.R. and Hernandez, J. (2013) Advances in Plant Growth-Promoting Bacterial Inoculant Technology: Formulations and Practical Perspectives (1998–2013). Plant and Soil, 378, 1-33.
https://doi.org/10.1007/s11104-013-1956-x
[39]  Sohaib, M., Zahir, Z.A., Khan, M.Y., Ans, M., Asghar, H.N., Yasin, S., et al. (2020) Comparative Evaluation of Different Carrier-Based Multi-Strain Bacterial Formulations to Mitigate the Salt Stress in Wheat. Saudi Journal of Biological Sciences, 27, 777-787.
https://doi.org/10.1016/j.sjbs.2019.12.034
[40]  Meguekam, T.L., Moualeu, D.P., Taffouo, V.D. and Stützel, H. (2021) Changes in Plant Growth, Leaf Relative Water Content and Physiological Traits in Response to Salt Stress in Peanut (Arachis hypogaea L.) Varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49, Article 12049.
https://doi.org/10.15835/nbha49112049
[41]  Kaur, G., Kaur, J. and Walia, S.S. (2024) Effect of Integrated Nutrient Management on Soil Health, Soil Quality, and Production of Cowpea (Vigna unguiculata L.). Journal of Basic Microbiology, 64, e2400225.
https://doi.org/10.1002/jobm.202400225
[42]  Allito, B.B., Ewusi-Mensah, N., Logah, V. and Hunegnaw, D.K. (2021) Legume-rhizobium Specificity Effect on Nodulation, Biomass Production and Partitioning of Faba Bean (Vicia faba L.). Scientific Reports, 11, Article 3678.
[43]  Masson-Boivin, C. and Sachs, J.L. (2018) Symbiotic Nitrogen Fixation by Rhizobia—The Roots of a Success Story. Current Opinion in Plant Biology, 44, 7-15.
https://doi.org/10.1016/j.pbi.2017.12.001
[44]  Htwe, A.Z., Moh, S.M., Soe, K.M., Moe, K. and Yamakawa, T. (2019) Effects of Biofertilizer Produced from Bradyrhizobium and Streptomyces Griseoflavus on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Seed Yield of Mung Bean, Cowpea, and Soybean. Agronomy, 9, Article 77.
https://doi.org/10.3390/agronomy9020077
[45]  Sinha, R.K., Valani, D., Chauhan, K. and Agarwal S. (2010) Embarking on a Second Green Revolution for Sustainable Agriculture by Vermiculture Biotechnology Using Earthworms: Reviving the Dreams of Sir Charles Darwin. Journal Agriculture Technology Sustainable Development, 2, 113-128.
https://doi.org/10.5897/JABSD.9000017

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133