We find the necessary and sufficient conditions on a coproduct of connected acts over a semigroup to be strongly hopfian. From this, we deduce the conditions of the strong hopfness for unitary acts over groups. Moreover, we prove that a finite coproduct of strongly hopfian acts over an arbitrary semigroup is strongly hopfian.
References
[1]
Kurosh, A.G. (2003) The Theory of Groups, V. 1: Chelsea Publ. Co., N.Y., 1956, 1960, 272 p.; V. 2. AMS, 308 p.
[2]
Varadarajan, K. (1992) Hopfian and Co-Hopfian Objects. Publicacions Matemàtiques, 36, 293-317. https://doi.org/10.5565/publmat_36192_21
[3]
Deo, S. and Varadarajan, K. (1997) Hopfian and Co-Hopfian Groups. BulletinoftheAustralianMathematicalSociety, 56, 17-24. https://doi.org/10.1017/s0004972700030690
[4]
Hirshon, R. (1970) On Hopfian Groups. PacificJournalofMathematics, 32, 753-766. https://doi.org/10.2140/pjm.1970.32.753
[5]
Kaygorodov, E.V. (2014) Hopfian Abelian Groups. Gorno-Altaisk State Univ., 128 p. (In Russian)
[6]
Kilp, M., Knauer, U. and Mikhalev, A.V. (2000) Monoids, Acts and Categories. W. de Gruyter, xvii + 529 p.
[7]
Kozhukhov, I.B. and Mikhalev, A.V. (2023) Acts over Semigroups. JournalofMathematicalSciences, 269, 362-401. https://doi.org/10.1007/s10958-023-06287-3
[8]
Kozhukhov, I.B. and Kolesnikova, K.A. (2023) On Hopfianity and Co-Hopfianity of Acts over Groups. JournalofMathematicalSciences, 269, 356-361. https://doi.org/10.1007/s10958-023-06286-4
[9]
Kozhukhov, I.B. and Kolesnikova, K.A. (2023) Coproduct of Co-Hopfian Acts, Proc. VIII Int. Conf. “Donetsk Readings 2023”. Vol. 1, Donetsk State Univ., 167-169. (In Russian)
[10]
Roueentan, M. and Khosravi, R. (2022) On Hopfian (Co-Hopfian) and Fitting S-Acts (I). 13 p.
[11]
Roueentan, M. and Khosravi, R. (2024) A Note on Hopfian and Co-Hopfian S-Acts. IranianJournalofScience. https://doi.org/10.1007/s40995-024-01753-2
[12]
Kartashov, V.K. (2008) Independent Systems of Generators and the Hopf Property for Unary Algebras. DiscreteMathematicsandApplications, 18, 625-630. https://doi.org/10.1515/dma.2008.047
[13]
Clifford, A.H. and Preston, G.B. (1961, 1967) The Algebraic Theory of Semigroups, V. I, II, Mathematical Surveys, Number 7. Amer. Math. Soc., Providence, xvi + 244 p. and xv + 350 p.
[14]
Cohn, P.M. (1965) Universal Algebra. Harper & Row, xv + 333 p.
[15]
Jakubíková-Studenovská, D. and Pócs, J. (2009) Monounary Algebras. UPJS, 302 p.