全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

miRNAs在骨髓间充质干细胞成骨分化中的作用
The Role of miRNAs in the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

DOI: 10.12677/jcpm.2025.41051, PP. 334-340

Keywords: 骨髓间充质干细胞,成骨分化,信号通路,miRNAs
Bone Marrow Mesenchymal Stem Cells
, Osteogenic Differentiation, Signaling Pathways, miRNAs

Full-Text   Cite this paper   Add to My Lib

Abstract:

间充质干细胞(MSC),也称为多能基质细胞,是一种首次在骨髓中发现的非造血干细胞群,目前已从各种成体组织来源中分离出来,是能够分化为多种间充质组织(如脂肪和骨骼)的成熟细胞的多能细胞。MicroRNAs (miRNA)是一种高度保守的内源性非蛋白质编码RNA,通过翻译抑制或降解其靶标来调节基因表达,在调节BMSC分化中起主要作用。本文探讨了miRNAs骨髓间充质干细胞成骨分化中的作用。
Mesenchymal stem cells (MSCs), also known as pluripotent stromal cells, are a population of non-hematopoietic stem cells first discovered in the bone marrow that have been isolated from various adult tissue sources and are pluripotent cells capable of differentiating into mature cells of a variety of mesenchymal tissues, such as fat and bone. MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding RNAs that play a major role in regulating BMSC differentiation by translating inhibition or degradation of their targets to regulate gene expression. This article explores the role of miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells.

References

[1]  Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508.
https://doi.org/10.1126/science.289.5484.1504
[2]  Friedenstein, A.J., Chailakhyan, R.K. and Gerasimov, U.V. (1987) Bone Marrow Osteogenic Stem Cells: In Vitro Cultivation and Transplantation in Diffusion Chambers. Cell Proliferation, 20, 263-272.
https://doi.org/10.1111/j.1365-2184.1987.tb01309.x
[3]  Beyer, C., Zampetaki, A., Lin, N., Kleyer, A., Perricone, C., Iagnocco, A., et al. (2015) Signature of Circulating MicroRNAs in Osteoarthritis. Annals of the Rheumatic Diseases, 74, e18.
https://doi.org/10.1136/annrheumdis-2013-204698
[4]  Jackson, R.J. and Standart, N. (2007) How Do MicroRNAs Regulate Gene Expression? Sciences STKE, 2007, re1.
https://doi.org/10.1126/stke.3672007re1
[5]  Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-y
[6]  Farh, K.K., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., et al. (2005) The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution. Science, 310, 1817-1821.
https://doi.org/10.1126/science.1121158
[7]  Huntzinger, E. and Izaurralde, E. (2011) Gene Silencing by MicroRNAs: Contributions of Translational Repression and mRNA Decay. Nature Reviews Genetics, 12, 99-110.
https://doi.org/10.1038/nrg2936
[8]  Mizuno, Y., Yagi, K., Tokuzawa, Y., Kanesaki-Yatsuka, Y., Suda, T., Katagiri, T., et al. (2008) miR-125b Inhibits Osteoblastic Differentiation by Down-Regulation of Cell Proliferation. Biochemical and Biophysical Research Communications, 368, 267-272.
https://doi.org/10.1016/j.bbrc.2008.01.073
[9]  Zhou, B., Peng, K., Wang, G., Chen, W., Liu, P., Chen, F., et al. (2020) miR-483-3p Promotes the Osteogenesis of Human Osteoblasts by Targeting Dikkopf 2 (DKK2) and the Wnt Signaling Pathway. International Journal of Molecular Medicine, 46, 1571-1581.
https://doi.org/10.3892/ijmm.2020.4694
[10]  Huang, Y., Xiao, D., Huang, S., Zhuang, J., Zheng, X., Chang, Y., et al. (2020) Circular RNA YAP1 Attenuates Osteoporosis through Up-Regulation of YAP1 and Activation of Wnt/β-Catenin Pathway. Biomedicine & Pharmacotherapy, 129, Article 110365.
https://doi.org/10.1016/j.biopha.2020.110365
[11]  Huang, Y., Xu, Y., Feng, S., He, P., Sheng, B. and Ni, J. (2021) miR-19b Enhances Osteogenic Differentiation of Mesenchymal Stem Cells and Promotes Fracture Healing through the WWP1/Smurf2-Mediated KLF5/β-Catenin Signaling Pathway. Experimental & Molecular Medicine, 53, 973-985.
https://doi.org/10.1038/s12276-021-00631-w
[12]  Feng, Y., Wan, P., Yin, L. and Lou, X. (2020) The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1. Journal of Microbiology and Biotechnology, 30, 448-458.
https://doi.org/10.4014/jmb.1908.08036
[13]  Li, Z., Hu, H., Zhang, X., Liu, G., Ran, B., Zhang, P., et al. (2019) miR‐291a‐3p Regulates the BMSCs Differentiation via Targeting DKK1 in Dexamethasone‐Induced Osteoporosis. The Kaohsiung Journal of Medical Sciences, 36, 35-42.
https://doi.org/10.1002/kjm2.12134
[14]  Lamplot, J.D., Qin, J., Nan, G., et al. (2013) BMP9 Signaling in Stem Cell Differentiation and Osteogenesis. American Journal of Stem Cells, 2, 1-21.
[15]  Chen, G., Deng, C. and Li, Y. (2012) TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation. International Journal of Biological Sciences, 8, 272-288.
https://doi.org/10.7150/ijbs.2929
[16]  Sun, M.H., Wang, W.J., Li, Q., et al. (2018) Autologous Oxygen Release Nano Bionic Scaffold Composite miR-106a Induced BMSCs Enhances Osteoblast Conversion and Promotes Bone Repair through Regulating BMP-2. European Review for Medical and Pharmacological Sciences, 22, 7148-7155.
[17]  陈伟娜, 王亮, 陈立叶. 血清miR-125a-3p、BMP-2水平与骨质疏松性椎体压缩性骨折术后延迟愈合的关系[J]. 山东医药, 2023, 63(25): 56-59.
[18]  Zeng, H., Dong, L., Huang, Y., Xu, C., Zhao, X. and Wu, L. (2021) USF2 Reduces BMP3 Expression via Transcriptional Activation of miR-34a, Thus Promoting Osteogenic Differentiation of BMSCs. Journal of Bone and Mineral Metabolism, 39, 997-1008.
https://doi.org/10.1007/s00774-021-01254-x
[19]  Qi, J., Zhang, Z., Dong, Z., Shan, T. and Yin, Z. (2024) miR-150-5p Inhibits the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Irisin to Regulate the P38/MAPK Signaling Pathway. Journal of Orthopaedic Surgery and Research, 19, Article No. 190.
https://doi.org/10.1186/s13018-024-04671-6
[20]  Guo, Y., Li, L., Gao, J., Chen, X. and Sang, Q. (2016) miR-214 Suppresses the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells and These Effects Are Mediated through the Inhibition of the JNK and P38 Pathways. International Journal of Molecular Medicine, 39, 71-80.
https://doi.org/10.3892/ijmm.2016.2826
[21]  Zhu, Y., Wang, S., Ding, D., Xu, L. and Zhu, H. (2017) miR-217 Inhibits Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells by Binding to Runx2. Molecular Medicine Reports, 15, 3271-3277.
https://doi.org/10.3892/mmr.2017.6349
[22]  Hu, N., Feng, C., Jiang, Y., Miao, Q. and Liu, H. (2015) Regulative Effect of miR-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. International Journal of Molecular Sciences, 16, 10491-10506.
https://doi.org/10.3390/ijms160510491
[23]  Xu, J., Liu, X., Chen, J., Zacharek, A., Cui, X., Savant-Bhonsale, S., et al. (2009) Simvastatin Enhances Bone Marrow Stromal Cell Differentiation into Endothelial Cells via Notch Signaling Pathway. American Journal of Physiology-Cell Physiology, 296, C535-C543.
https://doi.org/10.1152/ajpcell.00310.2008
[24]  齐磊. miR-34b对骨髓间充质干细胞成骨分化的影响及相关机制[J]. 临床与病理杂志, 2016, 36(7): 898-904.
[25]  Chen, L., HolmstrØm, K., Qiu, W., Ditzel, N., Shi, K., Hokland, L., et al. (2014) MicroRNA-34a Inhibits Osteoblast Differentiation and in vivo Bone Formation of Human Stromal Stem Cells. Stem Cells, 32, 902-912.
https://doi.org/10.1002/stem.1615
[26]  Zhou, Y., Qiao, H., Liu, L., et al. (2021) miR-21 Regulates Osteogenic and Adipogenic Differentiation of BMSCs by Targeting PTEN. Musculoskelet Neuronal Interact, 1, 568-576.
[27]  Zhao, C., Gu, Y., Wang, Y., Qin, Q., Wang, T., Huang, M., et al. (2021) miR-129-5p Promotes Osteogenic Differentiation of BMSCs and Bone Regeneration via Repressing Dkk3. Stem Cells International, 2021, Article ID: 7435605.
https://doi.org/10.1155/2021/7435605
[28]  Lin, Z., He, H., Wang, M. and Liang, J. (2019) MicroRNA‐130a Controls Bone Marrow Mesenchymal Stem Cell Differentiation Towards the Osteoblastic and Adipogenic Fate. Cell Proliferation, 52, e12688.
https://doi.org/10.1111/cpr.12688
[29]  Cao, W., Yang, X., Hu, X.H., Li, J., Tian, J., OuYang, R., et al. (2023) miR-344d-3p Regulates Osteogenic and Adipogenic Differentiation of Mouse Mandibular Bone Marrow Mesenchymal Stem Cells. PeerJ, 11, e14838.
https://doi.org/10.7717/peerj.14838
[30]  Zhang, Z., Jiang, W., Hu, M., Gao, R. and Zhou, X. (2021) miR-486-3p Promotes Osteogenic Differentiation of BMSC by Targeting CTNNBIP1 and Activating the Wnt/β-Catenin Pathway. Biochemical and Biophysical Research Communications, 566, 59-66.
https://doi.org/10.1016/j.bbrc.2021.05.098
[31]  Zhang, L., Zhang, C., Zheng, J., Wang, Y., Wei, X., Yang, Y., et al. (2023) miR-155-5p/Bmal1 Modulates the Senescence and Osteogenic Differentiation of Mouse BMSCs through the Hippo Signaling Pathway. Stem Cell Reviews and Reports, 20, 554-567.
https://doi.org/10.1007/s12015-023-10666-3
[32]  Tang, J., Lin, X., Zhong, J., Xu, F., Wu, F., Liao, X., et al. (2019) miR-124 Regulates the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Sp7. Molecular Medicine Reports, 19, 3807-3814.
https://doi.org/10.3892/mmr.2019.10054
[33]  Zhang, Y., Zhou, L., Zhang, Z., Ren, F., Chen, L. and Lan, Z. (2020) miR-10a-5p Inhibits Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Molecular Medicine Reports, 22, 135-144.
https://doi.org/10.3892/mmr.2020.11110
[34]  Jiang, K., Teng, G. and Chen, Y. (2020) MicroRNA‐23 Suppresses Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Targeting the MEF2C‐Mediated MAPK Signaling Pathway. The Journal of Gene Medicine, 22, e3216.
https://doi.org/10.1002/jgm.3216
[35]  Yang, Q., Zhou, Y., Wang, T., Cai, P., Fu, W., Wang, J., et al. (2021) MiRNA‐1271‐5p Regulates Osteogenic Differentiation of Human Bone Marrow‐Derived Mesenchymal Stem Cells by Targeting Forkhead Box O1 (FOXO1). Cell Biology International, 45, 1468-1476.
https://doi.org/10.1002/cbin.11585

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133