全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

综述:急性肺损伤的不同干细胞治疗研究进展
Advances in Stem Cell Therapy for Acute Lung Injury: A Review

DOI: 10.12677/jcpm.2025.41050, PP. 326-333

Keywords: 急性肺损伤(ALI),间充质干细胞(MSCs),干细胞治疗,免疫调节,组织修复,外泌体,肺泡–毛细血管屏障
Acute Lung Injury (ALI)
, Mesenchymal Stem Cells (MSCs), Stem Cell Therapy, Immune Regulation, Tissue Repair, Exosomes, Alveolar-Capillary Barrier

Full-Text   Cite this paper   Add to My Lib

Abstract:

急性肺损伤(ALI)是一种具有高发病率和高死亡率的严重疾病,目前缺乏有效的治疗手段。近年来,干细胞治疗因其多能性和再生能力受到广泛关注。本综述总结了不同类型干细胞(如间充质干细胞、上皮祖细胞、内皮祖细胞等)在急性肺损伤中的治疗潜力,重点阐述了其作用机制、实验研究进展以及临床应用的挑战和未来方向。
Acute lung injury (ALI) is a severe clinical condition with high morbidity and mortality rates, for which effective treatment options remain elusive. In recent years, stem cell therapy has emerged as a promising approach due to the pluripotency and regenerative capabilities of stem cells. This review explores the therapeutic potential of various stem cell types, including mesenchymal stem cells (MSCs), epithelial progenitor cells, and endothelial progenitor cells, in the context of ALI. It highlights their mechanisms of action, recent advances in experimental studies, and the challenges associated with clinical translation, while providing insights into future research directions.

References

[1]  Mokra, D. and Kosutova, P. (2015) Biomarkers in Acute Lung Injury. Respiratory Physiology & Neurobiology, 209, 52-58.
https://doi.org/10.1016/j.resp.2014.10.006
[2]  Li, Q., Chen, X. and Li, J. (2020) Marrow-derived Mesenchymal Stem Cells Regulate the Inflammatory Response and Repair Alveolar Type II Epithelial Cells in Acute Lung Injury of Rats. Journal of International Medical Research, 48.
https://doi.org/10.1177/0300060520909027
[3]  Raghavendran, K. and Napolitano, L.M. (2011) Definition of ALI/ARDS. Critical Care Clinics, 27, 429-437.
https://doi.org/10.1016/j.ccc.2011.05.006
[4]  Bernard, G.R., Artigas, A., Brigham, K.L., Carlet, J., Falke, K., Hudson, L., et al. (1994) The American-European Consensus Conference on ARDS. Definitions, Mechanisms, Relevant Outcomes, and Clinical Trial Coordination. American Journal of Respiratory and Critical Care Medicine, 149, 818-824.
https://doi.org/10.1164/ajrccm.149.3.7509706
[5]  Ranieri, V.M., Rubenfeld, G.D., Thompson, B.T., et al. (2012) Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA, 307, 2526-2533.
[6]  Prasad, M., Corban, M.T., Henry, T.D., Dietz, A.B., Lerman, L.O. and Lerman, A. (2020) Promise of Autologous CD34+ Stem/Progenitor Cell Therapy for Treatment of Cardiovascular Disease. Cardiovascular Research, 116, 1424-1433.
https://doi.org/10.1093/cvr/cvaa027
[7]  Zhao, Y., Knight, C.M., Jiang, Z., Delgado, E., Van Hoven, A.M., Ghanny, S., et al. (2022) Stem Cell Educator Therapy in Type 1 Diabetes: From the Bench to Clinical Trials. Autoimmunity Reviews, 21, Article ID: 103058.
https://doi.org/10.1016/j.autrev.2022.103058
[8]  Parmar, M., Grealish, S. and Henchcliffe, C. (2020) The Future of Stem Cell Therapies for Parkinson Disease. Nature Reviews Neuroscience, 21, 103-115.
https://doi.org/10.1038/s41583-019-0257-7
[9]  Ahmadian-Moghadam, H., Sadat-Shirazi, M. and Zarrindast, M. (2020) Therapeutic Potential of Stem Cells for Treatment of Neurodegenerative Diseases. Biotechnology Letters, 42, 1073-1101.
https://doi.org/10.1007/s10529-020-02886-1
[10]  Chang, Y., Pei, X. and Huang, X. (2022) Haematopoietic Stem-Cell Transplantation in China in the Era of Targeted Therapies: Current Advances, Challenges, and Future Directions. The Lancet Haematology, 9, e919-e929.
https://doi.org/10.1016/s2352-3026(22)00293-9
[11]  Sarsenova, M., Issabekova, A., Abisheva, S., Rutskaya-Moroshan, K., Ogay, V. and Saparov, A. (2021) Mesenchymal Stem Cell-Based Therapy for Rheumatoid Arthritis. International Journal of Molecular Sciences, 22, Article 11592.
https://doi.org/10.3390/ijms222111592
[12]  Tropea, K.A., Leder, E., Aslam, M., Lau, A.N., Raiser, D.M., Lee, J., et al. (2012) Bronchioalveolar Stem Cells Increase after Mesenchymal Stromal Cell Treatment in a Mouse Model of Bronchopulmonary Dysplasia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302, L829-L837.
https://doi.org/10.1152/ajplung.00347.2011
[13]  Gao, F., Chiu, S.M., Motan, D.A.L., Zhang, Z., Chen, L., Ji, H., et al. (2016) Mesenchymal Stem Cells and Immunomodulation: Current Status and Future Prospects. Cell Death & Disease, 7, e2062-e2062.
https://doi.org/10.1038/cddis.2015.327
[14]  Vignozzi, L., Morelli, A., Sarchielli, E., Comeglio, P., Filippi, S., Cellai, I., et al. (2011) Testosterone Protects from Metabolic Syndrome-Associated Prostate Inflammation: An Experimental Study in Rabbit. Journal of Endocrinology, 212, 71-84.
https://doi.org/10.1530/joe-11-0289
[15]  Prockop, D.J. (1997) Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues. Science, 276, 71-74.
https://doi.org/10.1126/science.276.5309.71
[16]  Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A.I., et al. (2008) Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide. Cell Stem Cell, 2, 141-150.
https://doi.org/10.1016/j.stem.2007.11.014
[17]  Ungerer, C., Quade-Lyssy, P., Radeke, H.H., Henschler, R., Königs, C., Köhl, U., et al. (2014) Galectin-9 Is a Suppressor of T and B Cells and Predicts the Immune Modulatory Potential of Mesenchymal Stromal Cell Preparations. Stem Cells and Development, 23, 755-766.
https://doi.org/10.1089/scd.2013.0335
[18]  Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., et al. (2007) Human Leukocyte Antigen-G5 Secretion by Human Mesenchymal Stem Cells Is Required to Suppress T Lymphocyte and Natural Killer Function and to Induce CD4+CD25highFOXP3+ Regulatory T Cells. Stem Cells, 26, 212-222.
https://doi.org/10.1634/stemcells.2007-0554
[19]  Lee, H., Kim, S., Jeon, M., Yi, T. and Song, S.U. (2017) ICOSL Expression in Human Bone Marrow-Derived Mesenchymal Stem Cells Promotes Induction of Regulatory T Cells. Scientific Reports, 7, Article No. 44486.
https://doi.org/10.1038/srep44486
[20]  Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., et al. (2022) The Secretion Profile of Mesenchymal Stem Cells and Potential Applications in Treating Human Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 92.
https://doi.org/10.1038/s41392-022-00932-0
[21]  Wang, G., Cao, K., Liu, K., Xue, Y., Roberts, A.I., Li, F., et al. (2017) Kynurenic Acid, an IDO Metabolite, Controls TSG-6-Mediated Immunosuppression of Human Mesenchymal Stem Cells. Cell Death & Differentiation, 25, 1209-1223.
https://doi.org/10.1038/s41418-017-0006-2
[22]  Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., et al. (2015) LPS-Preconditioned Mesenchymal Stromal Cells Modify Macrophage Polarization for Resolution of Chronic Inflammation via Exosome-Shuttled Let-7B. Journal of Translational Medicine, 13, Article No. 308.
https://doi.org/10.1186/s12967-015-0642-6
[23]  Takahashi, K. and Yamanaka, S. (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126, 663-676.
https://doi.org/10.1016/j.cell.2006.07.024
[24]  Martins‐Taylor, K. and Xu, R. (2011) Concise Review: Genomic Stability of Human Induced Pluripotent Stem Cells. Stem Cells, 30, 22-27.
https://doi.org/10.1002/stem.705
[25]  Evans, M.J. and Kaufman, M.H. (1981) Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature, 292, 154-156.
https://doi.org/10.1038/292154a0
[26]  Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., et al. (1998) Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 282, 1145-1147.
https://doi.org/10.1126/science.282.5391.1145
[27]  Barkauskas, C.E., Cronce, M.J., Rackley, C.R., Bowie, E.J., Keene, D.R., Stripp, B.R., et al. (2013) Type 2 Alveolar Cells Are Stem Cells in Adult Lung. Journal of Clinical Investigation, 123, 3025-3036.
https://doi.org/10.1172/jci68782
[28]  Desai, T.J., Brownfield, D.G. and Krasnow, M.A. (2014) Alveolar Progenitor and Stem Cells in Lung Development, Renewal and Cancer. Nature, 507, 190-194.
https://doi.org/10.1038/nature12930
[29]  Chen, Y., Huang, S.X., de Carvalho, A.L.R.T., Ho, S., Islam, M.N., Volpi, S., et al. (2017) A Three-Dimensional Model of Human Lung Development and Disease from Pluripotent Stem Cells. Nature Cell Biology, 19, 542-549.
https://doi.org/10.1038/ncb3510
[30]  Dye, B.R., Dedhia, P.H., Miller, A.J., Nagy, M.S., White, E.S., Shea, L.D., et al. (2016) A Bioengineered Niche Promotes in Vivo Engraftment and Maturation of Pluripotent Stem Cell Derived Human Lung Organoids. eLife, 5, e19732.
https://doi.org/10.7554/elife.19732
[31]  Nichane, M., Javed, A., Sivakamasundari, V., Ganesan, M., Ang, L.T., Kraus, P., et al. (2017) Isolation and 3D Expansion of Multipotent Sox9+ Mouse Lung Progenitors. Nature Methods, 14, 1205-1212.
https://doi.org/10.1038/nmeth.4498
[32]  Hillel-Karniel, C., Rosen, C., Milman-Krentsis, I., Orgad, R., Bachar-Lustig, E., Shezen, E., et al. (2020) Multi-Lineage Lung Regeneration by Stem Cell Transplantation across Major Genetic Barriers. Cell Reports, 30, 807-819.e4.
https://doi.org/10.1016/j.celrep.2019.12.058
[33]  郭桢楠, 马雪, 丁文刚. 内皮祖细胞在急性肺损伤中应用的研究进展[J]. 中国现代医学杂志, 2021, 31(3): 65-69.
[34]  Liu, C., Xiao, K. and Xie, L. (2022) Advances in the Regulation of Macrophage Polarization by Mesenchymal Stem Cells and Implications for ALI/ARDS Treatment. Frontiers in Immunology, 13, Article 928134.
https://doi.org/10.3389/fimmu.2022.928134
[35]  高昕, 杨屹羚, 黄湘如, 等. 利用CRISPR/Cas9靶向敲除Piezo1基因对小鼠间充质干细胞成骨分化的影响研究[J]. 上海交通大学学报(医学版), 2023, 43(9): 1080-1088.
[36]  Huang, W., Fu, G., Wang, Y., Chen, C., Luo, Y., Yan, Q., et al. (2024) Immunometabolic Reprogramming of Macrophages with Inhalable CRISPR/Cas9 Nanotherapeutics for Acute Lung Injury Intervention. Acta Biomaterialia, 181, 308-316.
https://doi.org/10.1016/j.actbio.2024.03.031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133