全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稀土基材料用于电催化CO2RR的研究进展
Research Progress of Rare Earth-Based Materials for Electrocatalytic CO2RR

DOI: 10.12677/ije.2025.141009, PP. 67-74

Keywords: CO2电还原,电催化剂,稀土基材料
CO2 Electroreduction
, Electrocatalysts, Rare Earth Based Materials

Full-Text   Cite this paper   Add to My Lib

Abstract:

电催化CO2还原反应(CO2RR)被认为是储存间歇性可再生能源和缓解能源危机的有效手段。多年来,已将金属及其氧化物、碳基材料、单原子催化剂等不同电催化剂用于CO2RR并取得了一定的进展,但将稀土元素用于CO2RR的报道却较少。本文通过总结稀土材料在CO2RR反应中的应用现状,为稀土基纳米材料在电催化中的应用提供了合理的前景,探究了稀土元素材料在CO2RR中的催化性能,以期促进对工业应用的研究。
Electrocatalytic CO2 reduction reaction (CO2RR) is considered an effective means of storing intermittent renewable energy and alleviating the energy crisis. Over the years, different electrocatalysts such as metals and their oxides, carbon-based materials, and single-atom catalysts have been used for CO2RR and some progress has been made, but the use of rare earth elements for CO2RR has been reported less. In this paper, we summarize the application status of rare earth materials in CO2RR reaction, provide a reasonable prospect for the application of rare earth-based nanomaterials in electrocatalysis, and explore the catalytic performance of rare earth element materials in CO2RR, to promote the research of industrial applications.

References

[1]  Jiang, M., Wang, H., Zhu, M., Luo, X., He, Y., Wang, M., et al. (2024) Review on Strategies for Improving the Added Value and Expanding the Scope of CO2 Electroreduction Products. Chemical Society Reviews, 53, 5149-5189.
https://doi.org/10.1039/d3cs00857f
[2]  Do, V. and Lee, J. (2024) Surface Engineering for Stable Electrocatalysis. Chemical Society Reviews, 53, 2693-2737.
https://doi.org/10.1039/d3cs00292f
[3]  Lai, W., Qiao, Y., Wang, Y. and Huang, H. (2023) Stability Issues in Electrochemical Co2reduction: Recent Advances in Fundamental Understanding and Design Strategies. Advanced Materials, 35, Article ID: 2306288.
https://doi.org/10.1002/adma.202306288
[4]  Wang, X., Tang, Y., Lee, J. and Fu, G. (2022) Recent Advances in Rare-Earth-Based Materials for Electrocatalysis. Chem Catalysis, 2, 967-1008.
https://doi.org/10.1016/j.checat.2022.02.007
[5]  Zhou, X., Shan, J., Chen, L., Xia, B.Y., Ling, T., Duan, J., et al. (2022) Stabilizing Cu2+ Ions by Solid Solutions to Promote CO2 Electroreduction to Methane. Journal of the American Chemical Society, 144, 2079-2084.
https://doi.org/10.1021/jacs.1c12212
[6]  Liang, Z., Song, L., Sun, M., Huang, B. and Du, Y. (2023) Atomically Dispersed Indium and Cerium Sites for Selectively Electroreduction of CO2 to Formate. Nano Research, 16, 8757-8764.
https://doi.org/10.1007/s12274-023-5481-9
[7]  Liu, H., Li, B., Liu, Z., Liang, Z., Chuai, H., Wang, H., et al. (2023) Ceria-Mediated Dynamic Sn0/Snδ+ Redox Cycle for CO2 Electroreduction. ACS Catalysis, 13, 5033-5042.
https://doi.org/10.1021/acscatal.2c06135
[8]  Yang, Z., Ji, D., Li, Z., He, Z., Hu, Y., Yin, J., et al. (2023) CeO2/CuS Nanoplates Electroreduce CO2 to Ethanol with Stabilized Cu+ Species. Small, 19, Article ID: 2303099.
https://doi.org/10.1002/smll.202303099
[9]  Yu, R., Qiu, C., Lin, Z., Liu, H., Gao, J., Li, S., et al. (2022) CeOx Promoted Electrocatalytic CO2 Reduction to Formate by Assisting in the Critical Hydrogenation Step. ACS Materials Letters, 4, 1749-1755.
https://doi.org/10.1021/acsmaterialslett.2c00512
[10]  Duan, Y., Zhou, Y., Yu, Z., Liu, D., Wen, Z., Yan, J., et al. (2021) Boosting Production of HCOOH from CO2 Electroreduction via Bi/CeOx. Angewandte Chemie International Edition, 60, 8798-8802.
https://doi.org/10.1002/anie.202015713
[11]  Wu, S., Tian, M., Hu, Y., Zhang, N., Shen, W., Li, J., et al. (2023) CeO2 Promotes CO2 Electroreduction to Formate on Bi2S3 via Tuning of the *OCHO Intermediate. Inorganic Chemistry, 62, 4088-4096.
https://doi.org/10.1021/acs.inorgchem.2c03844
[12]  Liu, J., Li, P., Bi, J., Jia, S., Wang, Y., Kang, X., et al. (2023) Switching between C2+ Products and Ch4 in CO2 Electrolysis by Tuning the Composition and Structure of Rare-Earth/Copper Catalysts. Journal of the American Chemical Society, 145, 23037-23047.
https://doi.org/10.1021/jacs.3c05562
[13]  Feng, J., Wu, L., Liu, S., Xu, L., Song, X., Zhang, L., et al. (2023) Improving CO2-to-C2+ Product Electroreduction Efficiency via Atomic Lanthanide Dopant-Induced Tensile-Strained CuOx Catalysts. Journal of the American Chemical Society, 145, 9857-9866.
https://doi.org/10.1021/jacs.3c02428
[14]  Zhang, H., Wang, X., Sun, Y., Wang, X., Tang, Z., Li, S., et al. (2024) Targeted C-O Bond Cleavage of *CH2CHO at Copper Active Sites for Efficient Electrosynthesis of Ethylene from CO2 Reduction. Applied Catalysis B: Environment and Energy, 351, Article 123992.
https://doi.org/10.1016/j.apcatb.2024.123992
[15]  Li, H., Huang, H., Huang, W., Zhang, X., Hai, G., Lai, F., et al. (2024) Interfacial Accumulation and Stability Enhancement Effects Triggered by Built‐in Electric Field of SnO2/LaOCL Nanofibers Boost Carbon Dioxide Electroreduction. Small, 20, Article ID: 2402654.
https://doi.org/10.1002/smll.202402654
[16]  Jia, S., Zhu, Q., Wu, H., Han, S., Chu, M., Zhai, J., et al. (2022) Preparation of Trimetallic Electrocatalysts by One-Step Co-Electrodeposition and Efficient CO2 Reduction to Ethylene. Chemical Science, 13, 7509-7515.
https://doi.org/10.1039/d1sc06964k
[17]  Chen, S., Su, Y., Deng, P., Qi, R., Zhu, J., Chen, J., et al. (2020) Highly Selective Carbon Dioxide Electroreduction on Structure-Evolved Copper Perovskite Oxide toward Methane Production. ACS Catalysis, 10, 4640-4646.
https://doi.org/10.1021/acscatal.0c00847
[18]  Zhao, Y., Li, Y., Chen, J., Sun, B., Fan, L., Chen, J., et al. (2024) Cu/LaF3 Interfaces Boost Electrocatalytic Co-to-Acetate Conversion. ACS Catalysis, 14, 8366-8375.
https://doi.org/10.1021/acscatal.3c06014
[19]  Hu, S., Chen, Y., Zhang, Z., Li, S., Liu, H., Kang, X., et al. (2023) Ampere‐Level Current Density CO2 Reduction with High C2+ Selectivity on La(OH)3‐Modified Cu Catalysts. Small, 20, Article ID: 2308226.
https://doi.org/10.1002/smll.202308226
[20]  Wang, J., Cheng, C., Huang, B., Cao, J., Li, L., Shao, Q., et al. (2021) Grain-Boundary-Engineered La2CuO4 Perovskite Nanobamboos for Efficient CO2 Reduction Reaction. Nano Letters, 21, 980-987.
https://doi.org/10.1021/acs.nanolett.0c04004
[21]  Zhao, J., Zhang, P., Yuan, T., Cheng, D., Zhen, S., Gao, H., et al. (2023) Modulation of *CHxO Adsorption to Facilitate Electrocatalytic Reduction of CO2 to CH4 over Cu-Based Catalysts. Journal of the American Chemical Society, 145, 6622-6627.
https://doi.org/10.1021/jacs.2c12006
[22]  Feng, J., Wu, L., Song, X., Zhang, L., Jia, S., Ma, X., et al. (2024) CO2 Electrolysis to Multi-Carbon Products in Strong Acid at Ampere-Current Levels on La-Cu Spheres with Channels. Nature Communications, 15, Article No. 4821.
https://doi.org/10.1038/s41467-024-49308-8
[23]  Dong, X., Chen, H., Wang, S., Zou, R., Zang, S. and Cai, J. (2024) Introducing La into a Customized Dual Cu Covalent Organic Framework to Steer CO2 Electroreduction Selectivity from C2H4 to CH4. Advanced Materials.
https://doi.org/10.1002/adma.202413710
[24]  Chen, R., Jiang, Y., Zhu, Y., Zhang, L., Li, Y. and Li, C. (2024) Atomically Dispersed Scandium in Cuprous Oxide Weakens *Co Adsorption to Boost Carbon Dioxide Electroreduction toward C2 Products. Advanced Functional Materials.
https://doi.org/10.1002/adfm.202415940
[25]  Liu, J., Sun, L., Sun, Y., Sun, J., Pan, Y., Xu, M., et al. (2024) Theoretical Insights into Lanthanide Rare Earth Single-Atom Catalysts for Electrochemical CO2 Reduction. Journal of Materials Chemistry A, 12, 16183-16189.
https://doi.org/10.1039/d4ta02381a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133