|
胃癌患者Th17细胞、血清IL-17、MMP2的表达在评估淋巴结转移中的诊断价值
|
Abstract:
目的:探讨Th17细胞、血清白细胞介素-17 (IL-17)、基质金属蛋白酶(MMP2)在评估胃癌(GC)淋巴结转移中的临床应用价值。方法:选取2023年1月~2024年10月入住于天津市武清中医院的36例胃癌患者(GC组)及38例胃良性病变患者(对照组),采用流式细胞术检测各组外周血Th17细胞水平,采用酶联免疫吸附法(ELISA)测定血清中IL-17和MMP2水平,评估这三个检测指标在GC淋巴结转移中的应用价值及三者联合检测的诊断效能。结果:与对照组对比,GC组患者外周血Th17细胞水平明显增高,血清IL-17和MMP2水平也明显较高,差异均有统计学意义(均p < 0.05);GC组中,淋巴结转移者Th细胞水平、血清IL-17和MMP-2水平与未转移者对比,明显较高,差异均有统计学意义(均p < 0.05);Th17、IL-17和MMP2三项联合检测准确度、特异度、灵敏度分别为95.82%、94.21%和97.69%,与单项检测对比,均明显较高,差异均有统计学意义(均p < 0.05)。结论:Th17细胞、IL-17和MMP2与评估GC淋巴结转移有一定关联,三者联合检测有助于GC的鉴别诊断。
Objective: To explore the clinical application value of Th17 cells, serum Interleukin-17 (IL-17), and Matrix Metalloproteinases (MMP2) in assessing the lymph node metastasis of Gastric Cancer (GC). Methods: 36 GC patients (GC group) and 38 patients with benign gastric lesions (control group) admitted to Tianjin Wuqing Hospital of Traditional Chinese Medicine from January 2023 to October 2024 were selected. Flow cytometry was used to detect peripheral blood Th17 cell amount in each group, and Enzyme-Linked Immunosorbent Assay (ELISA) was used to measure IL-17 and MMP2 levels in the serum. The application value of these three detection indicators in the lymph node metastasis of GC, as well as the diagnostic efficacy of their combined detection, were evaluated. Results: Compared with control group, patients in the GC group showed a significant increase in Th17 cell levels in peripheral blood and prominently higher serum IL-17 and MMP2 levels, with statistical significance (all p < 0.05). In the GC group, the amount of Th17 cells, serum IL-17, and MMP-2 was significantly higher in patients with lymph node metastasis compared to those without metastasis, and the differences were statistically significant (all p < 0.05). The accuracy, specificity, and sensitivity of the combined detection of Th17, IL-17, and MMP2 were 95.82%, 94.21% and 97.69%, respectively. Compared with single detection, they were significantly higher, and the differences were statistically significant (all p < 0.05). Conclusion: Th17 cells, IL-17, and MMP2 are associated with lymph node metastasis in GC, and their combined detection can help in the differential diagnosis of GC.
[1] | Li, C., Lian, L., Li, Q. and Jiao, Y. (2024) Immunotherapy for Metastatic Gastric Cancer. World Journal of Gastrointestinal Surgery, 16, 3408-3412. https://doi.org/10.4240/wjgs.v16.i11.3408 |
[2] | Racz, K., Legner, A., Böhme, F. and Sebesta, C. (2023) Magenkarzinom. Wiener Medizinische Wochenschrift, 173, 227-231. https://doi.org/10.1007/s10354-023-01011-x |
[3] | Jaroenlapnopparat, A., Bhatia, K. and Coban, S. (2022) Inflammation and Gastric Cancer. Diseases, 10, Article 35. https://doi.org/10.3390/diseases10030035 |
[4] | Korn, T., Bettelli, E., Oukka, M. and Kuchroo, V.K. (2009) IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485-517. https://doi.org/10.1146/annurev.immunol.021908.132710 |
[5] | Konieczny, P., Xing, Y., Sidhu, I., Subudhi, I., Mansfield, K.P., Hsieh, B., et al. (2022) Interleukin-17 Governs Hypoxic Adaptation of Injured Epithelium. Science, 377, eabg9302. https://doi.org/10.1126/science.abg9302 |
[6] | Yang, B., Kang, H., Fung, A., Zhao, H., Wang, T. and Ma, D. (2014) The Role of Interleukin 17 in Tumour Proliferation, Angiogenesis, and Metastasis. Mediators of Inflammation, 2014, 1-12. https://doi.org/10.1155/2014/623759 |
[7] | Brackman, L.C., Jung, M.S., Green, E.H., Joshi, N., Revetta, F.L., McClain, M.S., et al. (2024) IL-17 Signaling Protects against Helicobacter Pylori-Induced Gastric Cancer. Gut Microbes, 16, Article 2430421. https://doi.org/10.1080/19490976.2024.2430421 |
[8] | Maybee, D.V., Cromwell, C.R., Hubbard, B.P. and Ali, M.A.M. (2023) MMP-2 Regulates Src Activation via Repression of the CHK/MATK Tumor Suppressor in Osteosarcoma. Cancer Reports, 7, e1946. https://doi.org/10.1002/cnr2.1946 |
[9] | Zhang, Q., Hu, W., Guo, M., Zhang, X., Zhang, Q., Peng, F., et al. (2024) MMP-2 Responsive Peptide Hydrogel-Based Nanoplatform for Multimodal Tumor Therapy. International Journal of Nanomedicine, 19, 53-71. https://doi.org/10.2147/ijn.s432112 |
[10] | Smyth, E.C., Nilsson, M., Grabsch, H.I., van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. The Lancet, 396, 635-648. https://doi.org/10.1016/s0140-6736(20)31288-5 |
[11] | Högner, A. and Moehler, M. (2022) Immunotherapy in Gastric Cancer. Current Oncology, 29, 1559-1574. https://doi.org/10.3390/curroncol29030131 |
[12] | Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[13] | Akbari, A., Ashtari, S., Tabaiean, S.P., Mehrdad‐Majd, H., Farsi, F., Shojaee, S., et al. (2022) Overview of Epidemiological Characteristics, Clinical Features, and Risk Factors of Gastric Cancer in Asia-Pacific Region. Asia-Pacific Journal of Clinical Oncology, 18, 493-505. https://doi.org/10.1111/ajco.13654 |
[14] | Zhang, C., Yamashita, H., Zhang, S. and Seto, Y. (2018) Reevaluation of Laparoscopic versus Open Distal Gastrectomy for Early Gastric Cancer in Asia: A Meta-Analysis of Randomized Controlled Trials. International Journal of Surgery, 56, 31-43. https://doi.org/10.1016/j.ijsu.2018.05.733 |
[15] | Mamun, T.I., Younus, S. and Rahman, M.H. (2024) Gastric Cancer—Epidemiology, Modifiable and Non-Modifiable Risk Factors, Challenges and Opportunities: An Updated Review. Cancer Treatment and Research Communications, 41, Article ID: 100845. https://doi.org/10.1016/j.ctarc.2024.100845 |
[16] | Elmamlook, S.M., Sabry, A.A.E., Elrefai, M. and Eldeen, A.B. (2024) Effect of Sleeve Gastrectomy versus One Anastomosis Gastric Bypass on Postoperative Renal Function and the Urinary Monocyte Chemoattractant Protein-1 (MCP-1) Level. Obesity Surgery, 34, 610-617. https://doi.org/10.1007/s11695-023-07033-z |
[17] | Rezalotfi, A., Ahmadian, E., Aazami, H., Solgi, G. and Ebrahimi, M. (2019) Gastric Cancer Stem Cells Effect on Th17/Treg Balance; A Bench to beside Perspective. Frontiers in Oncology, 9, Article 226. https://doi.org/10.3389/fonc.2019.00226 |
[18] | Amedei, A., Della Bella, C., Silvestri, E., Prisco, D. and D'Elios, M.M. (2012) T Cells in Gastric Cancer: Friends or Foes. Clinical and Developmental Immunology, 2012, 1-10. https://doi.org/10.1155/2012/690571 |
[19] | Hajimoradi, M., Rezalotfi, A., Esmaeilnejad-Ahranjani, P., Mohammad Hassan, Z. and Ebrahimi, M. (2022) STAT3 Inactivation Suppresses Stemness Properties in Gastric Cancer Stem Cells and Promotes Th17 in Treg/Th17 Balance. International Immunopharmacology, 111, Article 109048. https://doi.org/10.1016/j.intimp.2022.109048 |
[20] | Elieh-Ali-Komi, D., Kazemi, T., Shekari, N., Farzamifar, P., Eghbali, E., Mansoori, B., et al. (2024) Linoleic Acid Modulates the Expression of Metastatic and Angiogenic Markers MMP-2 and Talin-2 in Gastric Cancer Cell Line MKN-45. Iranian Journal of Public Health, 53, 1612-1620. https://doi.org/10.18502/ijph.v53i7.16055 |
[21] | Choi, E.K., Kim, H.D., Park, E.J., Song, S.Y., Phan, T.T., Nam, M., et al. (2023) 8-Methoxypsoralen Induces Apoptosis by Upregulating P53 and Inhibits Metastasis by Downregulating MMP-2 and MMP-9 in Human Gastric Cancer Cells. Biomolecules & Therapeutics, 31, 219-226. https://doi.org/10.4062/biomolther.2023.004 |
[22] | Ni, Y.J., Lu, J. and Zhou, H.M. (2019) Propofol Suppresses Proliferation, Migration and Invasion of Gastric Cancer Cells via Regulating miR-29/MMP-2 Axis. European Review for Medical and Pharmacological Sciences, 23, 8606-8615. https://doi.org/10.26355/eurrev_201910_19177 |