|
Medical Diagnosis 2025
尘肺病诊断的研究进展
|
Abstract:
尘肺病作为一种因劳动者在生产作业过程中吸入生产性粉尘而引发的肺组织弥漫性纤维化病症,有矽肺、煤工尘肺等12种类型,在我国属于极为严重的职业病范畴。近年来发达国家尘肺病的发病率与死亡数据呈现下降态势,但中国尘肺病依旧是职业健康范畴内亟待攻克的关键难题。尘肺病的诊断和早期筛查对于防治至关重要,有助于及时采取干预措施,减缓病程进展,降低致残率。文章对尘肺病影像学发展和早期生物标志物的探索及可能面临的挑战做出一个总结,为未来尘肺病影像学及辅助诊断技术研究方向提供参考依据。
Pneumoconiosis, characterized by diffuse pulmonary fibrosis resulting from occupational dust inhalation, encompasses 12 subtypes, including silicosis and coal workers’ pneumoconiosis. It is categorized as a severe occupational disease in China. Although developed countries have observed a decline in pneumoconiosis incidence and mortality rates, the condition continues to pose a significant challenge in China’s occupational health sector. Early diagnosis and screening are essential for the prevention and management of pneumoconiosis, enabling prompt intervention, disease progression mitigation, and disability rate reduction. This paper reviews advancements in imaging methodologies and the identification of early biomarkers for pneumoconiosis, as well as discusses the challenges encountered to inform future research in the field of pneumoconiosis imaging and diagnostic technologies.
[1] | 李德鸿. 不要把尘肺病防治引入歧途[J]. 环境与职业医学, 2018, 35(4): 283-285. |
[2] | 中华人民共和国国家卫生健康委员会. GBZ70-2015职业性尘肺病的诊断[S]. 2015. |
[3] | 国家卫生健康委员会. 2022年4月25日新闻发布会文字实录[EB/OL]. http://www.nhc.gov.cn/xcs/s3574/202204/2fbf355668df4fd0ade8b5c3cf455f95.shtml, 2022-04-26. |
[4] | 王峥, 张建芳, 钱青俊. 我国职业性尘肺病诊断标准的演变和发展[J]. 中国工业医学杂志, 2017(1): 69-71. |
[5] | 鲁洋, 刘拓, 朱秋鸿. 我国职业病诊断标准应用情况调查[J]. 中国卫生标准管理, 2022, 13(13): 1-5. |
[6] | 胡莲花, 李辉, 盛秋洁. 2013-2023年深圳市职业病防治院尘肺病筛查诊断情况研究[J/OL]. 中国典型病例大全, 2024, 18(4): 80-86. |
[7] | Pham, Q.T. (2001) Chest Radiography in the Diagnosis of Pneumoconiosis. The International Journal of Tuberculosis and Lung Disease, 5, 478-482. |
[8] | Leonard, J.F. and Templeton, P.A. (1992) Pulmonary Imaging Techniques in the Diagnosis of Occupational Interstitial Lung Disease. Occupational Medicine, 7, 241-260. |
[9] | Cullinan, P., Muñoz, X., Suojalehto, H., Agius, R., Jindal, S., Sigsgaard, T., et al. (2017) Occupational Lung Diseases: From Old and Novel Exposures to Effective Preventive Strategies. The Lancet Respiratory Medicine, 5, 445-455. https://doi.org/10.1016/s2213-2600(16)30424-6 |
[10] | Hering, K., Borsch-Galetke, E., Elliehausen, H., Frank, K., Hieckel, H., Hofmann-Preiß, K., et al. (2009) Digitale Radiografie in der Untersuchung von arbeits-und umweltbedingten Lungen-und Pleuraerkrankungen. Pneumologie, 63, 664-668. https://doi.org/10.1055/s-0029-1215110 |
[11] | Lee, W. and Choi, B. (2012) Utility of Digital Radiography for the Screening of Pneumoconiosis as Compared to Analog Radiography. Health Physics, 103, 64-69. https://doi.org/10.1097/hp.0b013e318249ac5d |
[12] | Suganuma, N., Yoshida, S., Takeuchi, Y., Nomura, Y.K. and Suzuki, K. (2023) Artificial Intelligence in Quantitative Chest Imaging Analysis for Occupational Lung Disease. Seminars in Respiratory and Critical Care Medicine, 44, 362-369. https://doi.org/10.1055/s-0043-1767760 |
[13] | Chen, J.Q., Jiang, Z.Q., Xiao, Y., Zhao, Y.W. and Zhang, X. (2012) The Analysis of Consistency between Digital Radiography and High-KV Chest Radiographs in Diagnosis Pneumoconiosis. Chinese Journal of Industrial Hygiene and Occupational Diseases, 30, 8-12. |
[14] | 曾刘桃, 陈钧强, 蒋兆强. 尘肺病影像学诊断的研究进展[J]. 预防医学, 2021, 33(12): 1236-1239. |
[15] | 王峥. 计算机辅助诊断在尘肺病诊断中的应用[J]. 世界最新医学信息文摘, 2019, 19(8): 78-79. |
[16] | ILO (2023) ILO International Classification of Radiographs of Pneumoconioses. https://www.ilo.org/resource/ilo-international-classification-radiographs-pneumoconioses-1 |
[17] | 曲良勇, 苑翠红, 钮建武, 刘靖. 数字X射线摄影在尘肺筛查中的应用研究[J]. 中国辐射卫生, 2018, 27(5): 507-510. |
[18] | Xia, L., Lü, F., Wang, Y., Sheng, B. and Zhou, S. (2012) Compute Tomography-Based Quantitative Evaluation of Pneumoconiosis. Journal of Southern Medical University, 32, 1768-1772. |
[19] | Hu, X., Zhou, R., Hu, M., Wen, J. and Shen, T. (2022) Differentiation and Prediction of Pneumoconiosis Stage by Computed Tomography Texture Analysis Based on U-Net Neural Network. Computer Methods and Programs in Biomedicine, 225, Article 107098. https://doi.org/10.1016/j.cmpb.2022.107098 |
[20] | Zhang, X., Kusaka, Y. and Ishii, Y. (1995) Computed Tomography of Pneumoconiosis. Sangyo Eiseigaku Zasshi, 37, 321-328. https://doi.org/10.1539/sangyoeisei.37.5_321 |
[21] | Franquet, T., Giménez, A. and Díaz, C. (2017) Asbestos-Related Diseases: The Role of Imaging. Radiographics, 37, 1883-1902. |
[22] | 王振光, 马大庆, 陈步东, 贺文, 王新莲, 刘大亮. 容积数据高分辨率CT重组在弥漫性肺疾病中的应用[J]. 中华放射学杂志, 2005, 39(11): 1153-1156. |
[23] | 夏艺, 管宇, 范丽, 等. 高分辨率CT容积定量技术在慢性阻塞性肺疾病中的应用研究[J]. 医学影像学杂志, 2013, 23(8): 1219-1222. |
[24] | 程雪菲. 《胸部CT诊断》出版: 胸部高分辨率CT技术的临床应用探讨[J]. 介入放射学杂志, 2021, 30(12): 13-32. |
[25] | 周绍权, 夏露花, 吕富荣. 早期尘肺HRCT影像学表现及优势[J]. 重庆医学, 2013, 42(11): 1305-1307. |
[26] | 金盛辉, 柳澄, 王焕强. 尘肺病胸部CT规范化检查技术专家共识(2020年版) [J]. 环境与职业医学, 2020, 37(10): 943-949. |
[27] | 中国疾病预防控制中心. T/WSJD 32-2023胸部CT辅助诊断尘肺病技术指南[EB/OL]. https://www.medsci.cn/guideline/show_article.do?id=21d1e1c0030e09d2, 2024-12-19. |
[28] | 中国卫生监督协会. 胸部CT辅助诊断尘肺病技术指南[T/WSJD32-2023] [EB/OL]. https://niohp.chinacdc.cn/sndt/202303/P020230330351513611430.pdf, 2024-12-19. |
[29] | Rajkomar, A., Lingam, S., Taylor, A.G., Blum, M. and Mongan, J. (2016) High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks. Journal of Digital Imaging, 30, 95-101. https://doi.org/10.1007/s10278-016-9914-9 |
[30] | Wang, X., Yu, J., Zhu, Q., Li, S., Zhao, Z., Yang, B., et al. (2020) Potential of Deep Learning in Assessing Pneumoconiosis Depicted on Digital Chest Radiography. Occupational and Environmental Medicine, 77, 597-602. https://doi.org/10.1136/oemed-2019-106386 |
[31] | Savranlar, A., Altın, R., Mahmutyazıcıoğlu, K., Özdemir, H., Kart, L., Özer, T., et al. (2004) Comparison of Chest Radiography and High-Resolution Computed Tomography Findings in Early and Low-Grade Coal Worker’s Pneumoconiosis. European Journal of Radiology, 51, 175-180. https://doi.org/10.1016/j.ejrad.2003.10.017 |
[32] | 王宁宁, 靳毅, 王成霞, 等. 尘肺病影像学及AI辅助诊断技术的研究进展[J]. 职业与健康, 2024, 40(6): 851-855. |
[33] | Sakai, M., Murayama, S., Gibo, M., Akamine, T., Yoshinaga, M., Iraha, S., et al. (2005) Can Maximum Intensity Projection Images with Multidetector-Row Computed Tomography Help to Differentiate between the Micronodular Distribution of Focal and Diffuse Infiltrative Lung Diseases? Journal of Computer Assisted Tomography, 29, 588-591. https://doi.org/10.1097/01.rct.0000175710.98923.a2 |
[34] | Preisser, A.M., Schlemmer, K., Herold, R., Laqmani, A., Terschüren, C. and Harth, V. (2020) Relations between Vital Capacity, CO Diffusion Capacity and Computed Tomographic Findings of Former Asbestos-Exposed Patients: A Cross-Sectional Study. Journal of Occupational Medicine and Toxicology, 15, Article No. 21. https://doi.org/10.1186/s12995-020-00272-1 |
[35] | Manners, D., Wong, P., Murray, C., Teh, J., Kwok, Y.J., de Klerk, N., et al. (2017) Correlation of Ultra-Low Dose Chest CT Findings with Physiologic Measures of Asbestosis. European Radiology, 27, 3485-3490. https://doi.org/10.1007/s00330-016-4722-7 |
[36] | Ludes, C., Schaal, M., Labani, A., Jeung, M., Roy, C. and Ohana, M. (2016) Scanner Thoracique Ultra-Basse Dose: La mort de la radiographie thoracique? La Presse Médicale, 45, 291-301. https://doi.org/10.1016/j.lpm.2015.12.003 |
[37] | 李继生. 尘肺病影像学诊断的研究进展[J]. 中国农村卫生, 2024, 16(9): 22. |
[38] | 张敏, 陈钧强. 人工智能技术在尘肺病诊断中的应用研究进展[J]. 环境与职业医学, 2020, 37(2): 192-196. |
[39] | Zhang, L., Rong, R., Li, Q., Yang, D.M., Yao, B., Luo, D., et al. (2021) A Deep Learning-Based Model for Screening and Staging Pneumoconiosis. Scientific Reports, 11, Article 2201. https://doi.org/10.1038/s41598-020-77924-z |
[40] | 王峥, 贺文. 深度残差网络在尘肺病诊断中的应用初探[J]. 中国工业医学, 2019, 32(1): 31-33. |
[41] | Costantini, L.M., Gilberti, R.M. and Knecht, D.A. (2011) The Phagocytosis and Toxicity of Amorphous Silica. PLOS ONE, 6, e14647. https://doi.org/10.1371/journal.pone.0014647 |
[42] | Privalova, L.I., Katsnelson, B.A., Sharapova, N.Y. and Kislitsina, N.S. (1995) On the Relationship between Activation and Breakdown of Macrophages in the Pathogenesis of Silicosis (An Overview). La Medicina del Lavoro, 86, 511-521. |
[43] | Ates, I., Yucesoy, B., Yucel, A., Suzen, S.H., Karakas, Y. and Karakaya, A. (2011) Possible Effect of Gene Polymorphisms on the Release of TNFα and IL1 Cytokines in Coal Workers’ Pneumoconiosis. Experimental and Toxicologic Pathology, 63, 175-179. https://doi.org/10.1016/j.etp.2009.11.006 |
[44] | 闫鑫华, 户元元, 田燕歌. 职业性尘肺病相关生物标志物研究进展[J]. 中国职业医学, 2022, 49(3): 355-360. |
[45] | 代静, 彭方达, 吴智君, 等. 粉尘接触人群生物监测研究进展[J]. 中国职业医学, 2024, 51(1): 105-110+115. |
[46] | 吴玛莉, 张涛, 陈燕. 职业性尘肺病生物标志物研究进展[J]. 中国职业医学, 2022, 49(1): 101-105+110. |
[47] | 寇杰. 基质金属蛋白酶基因多态性与尘肺易感性研究[D]: [硕士学位论文]. 秦皇岛: 华北理工大学, 2015. |
[48] | Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., et al. (2020) The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. International Journal of Molecular Sciences, 21, Article 9739. https://doi.org/10.3390/ijms21249739 |
[49] | 徐海明, 刘科良, 郝艳星, 等. 生物标志物的联合检测对矽肺早期辅助诊断的价值[J]. 癌变·畸变·突变, 2020, 32(5): 395-397+401. |