全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新工科导向的“智能选矿”课程教学方法探索
Exploration of Teaching Methods for “Intelligent Beneficiation” Course under the New Engineering Education Framework

DOI: 10.12677/ces.2025.132099, PP. 161-168

Keywords: 新工科,矿物加工,人工智能,智能选矿,教学方法
New Engineering Education
, Mineral Processing, Artificial Intelligence, Intelligent Beneficiation, Teaching Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

围绕“智能选矿”课程的教学设计与实施展开探讨,分析了课程在新工科背景下面临的主要问题及解决策略。课程内容涉及人工智能与矿物加工两大领域,针对学时限制、知识体系庞杂以及前置课程设置薄弱等问题,提出了通过合理设置课程目标、线上线下结合、交互式教学组件等方式,优化课程结构与教学模式。通过案例教学与实践操作,提升了学生的实际应用能力与创新思维,推动了理论与实践的深度融合。课程的开展不仅满足了煤炭行业智能化人才培养的需求,也为矿物加工工程的智能化转型提供了理论依据与实践指导。
This paper explores the teaching design and implementation of the “Intelligent Beneficiation” course, analyzing the main challenges and solutions faced under the framework of New Engineering Education. The course content spans two major fields: artificial intelligence and mineral processing. In response to challenges such as time constraints, a complex knowledge system, and weak prerequisite courses, the paper proposes strategies to optimize the course structure and teaching model, including setting clear course objectives, combining online and offline learning, and incorporating interactive teaching components. Through case-based teaching and practical operations, the course enhances students’ practical application skills and innovative thinking, fostering a deeper integration of theory and practice. The implementation of this course not only meets the demand for talent development in the intelligent coal industry but also provides a theoretical foundation and practical guidance for the intelligent transformation of mineral processing engineering.

References

[1]  钟登华. 新工科建设的内涵与行动[J]. 高等工程教育研究, 2017(3): 1-6.
[2]  关于加快煤矿智能化发展的指导意见[N]. 中国煤炭报, 2020-03-05(002).
[3]  丁阳, 高龙, 王兵生, 等. 煤矿企业智能化人才培养路径探究[J]. 中外企业文化, 2024(6): 77-79.
[4]  吕文豹, 刘海增, 马克平, 等. 《智能选矿》课程项目化教学的探索和实践[J]. 办公自动化, 2023, 28(2): 37-39+46.
[5]  王传真, 刘海增. 基于“线上线下 + 虚拟仿真”模式下的矿物加工工程专业生产实习创新与实践研究[J]. 长春大学学报, 2023, 33(8): 97-103.
[6]  范晓慧, 陈凤, 唐鸿鹄, 等. 矿物加工虚拟仿真实验教学建设及实践——以中南大学矿业学科为例[J]. 创新与创业教育, 2024, 15(2): 89-95.
[7]  王卫东, 涂亚楠, 徐宏祥, 等. 矿物加工工程专业实验室智能管理系统设计与实践[J]. 实验技术与管理, 2021, 38(12): 10-13+18.
[8]  伊宸廷. 人工智能赋能高校人才培养的时代意义与实践路径[J]. 黑龙江教育(高教研究与评估), 2024(12): 49-52.
[9]  王兴梅, 杨东梅, 蔡成涛. 新工科背景下“五融入”创新人才培养模式研究——以“机器学习”课程为例[J]. 科教导刊, 2024(1): 80-82.
[10]  杨平展, 蒋嘉伟, 廖容宽. 具身认知视角下线上课程开发的未来走向[J]. 中国教育信息化, 2024, 30(1): 120-128.
[11]  李佳坤, 钟蕾. 基于CAID的人工智能交互式教学方法在研究生教育改革中的应用[J]. 包装工程, 2024, 45(S1): 489-493.
[12]  康皓, 李月华, 杨硕. 多模态影像技术交互式教学平台在眼科临床教学中的应用[J]. 中国病案, 2024, 25(7): 89-92.
[13]  司明, 胡灿, 邬伯藩, 等. PID控制与性能评价仿真实验系统设计[J]. 实验室研究与探索, 2023, 42(12): 100-105+209.
[14]  张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000(1): 36-46.
[15]  徐志强, 吕子奇, 王卫东, 等. 煤矸智能分选的机器视觉识别方法与优化[J]. 煤炭学报, 2020, 45(6): 2207-2216.
[16]  Lv, Z., Wang, W., Xu, Z., Zhang, K. and Lv, H. (2021) Cascade Network for Detection of Coal and Gangue in the Production Context. Powder Technology, 377, 361-371.
https://doi.org/10.1016/j.powtec.2020.08.088
[17]  Lv, Z., Wang, W., Xu, Z., Zhang, K., Fan, Y. and Song, Y. (2021) Fine-Grained Object Detection Method Using Attention Mechanism and Its Application in Coal-Gangue Detection. Applied Soft Computing, 113, Article ID: 107891.
https://doi.org/10.1016/j.asoc.2021.107891
[18]  Lv, Z., Wang, W., Zhang, K., Li, W., Feng, J. and Xu, Z. (2022) A Synchronous Detection-Segmentation Method for Oversized Gangue on a Coal Preparation Plant Based on Multi-Task Learning. Minerals Engineering, 187, Article ID: 107806.
https://doi.org/10.1016/j.mineng.2022.107806
[19]  Lv, Z., Cui, Y., Zhang, K., Sun, M., Li, H. and Wang, W. (2023) Investigating Comparisons on the Coal and Gangue in Various Scenarios Using Multidimensional Image Features. Minerals Engineering, 204, Article ID: 108450.
https://doi.org/10.1016/j.mineng.2023.108450
[20]  Lv, Z., Wang, W., Zhang, K., Tian, R., Lv, Y., Sun, M., et al. (2024) A High-Confidence Instance Boundary Regression Approach and Its Application in Coal-Gangue Separation. Engineering Applications of Artificial Intelligence, 132, Article ID: 107894.
https://doi.org/10.1016/j.engappai.2024.107894
[21]  王占富, 程会朝, 许慧林, 等. 煤泥浮选智能化控制系统研制[J]. 煤炭加工与综合利用, 2022(8): 6-11.
[22]  Fan, Y., Lv, Z., Wang, W., Tian, R., Zhang, K., Wang, M., et al. (2022) A Density Map Regression Method and Its Application in the Coal Flotation Froth Image Analysis. Measurement, 205, Article ID: 112212.
https://doi.org/10.1016/j.measurement.2022.112212
[23]  Fan, Y., Lv, Z., Song, Y., Zhang, K., Wang, W., Chen, S., et al. (2024) Optimizing Flotation Froth Image Segmentation via Parallel Branch Network and Hybrid Loss Supervision. Minerals Engineering, 219, Article ID: 109060.
https://doi.org/10.1016/j.mineng.2024.109060

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133