全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从磷灰石稀土元素分配探究花岗岩源区特性
Exploring the Characteristics of the Granite Source Area from the Distribution of Rare Earth Elements in Apatite

DOI: 10.12677/ag.2025.152019, PP. 172-186

Keywords: 花岗岩,磷灰石,稀土元素
Granite
, Apatite, Rare Earth Elements

Full-Text   Cite this paper   Add to My Lib

Abstract:

花岗岩是由岩浆源区经历一系列地质作用形成的,这些岩浆通常来自不同的地壳深部源区,而磷灰石是花岗岩中常见的一种副矿物,具有特殊的地化性质,因此了解磷灰石中稀土元素分配机制对岩浆源区的追踪以及岩浆演化和岩石成岩过程的研究是研究花岗岩成因的关键。本研究通过对相关实验数据和理论分析的研究,揭示了磷灰石的晶体结构和化学组成对稀土元素分配的影响。研究发现,磷灰石中的Ca2+和磷酸根基团与稀土元素的离子半径和电荷特征相互作用,从而影响稀土元素在磷灰石中的相容性和分配行为。结合广西花山、姑婆山等地区对磷灰石的研究数据以及前人研究成果,进一步探讨了温度、压力等因素对磷灰石与稀土元素相互作用的影响,为研究稀土元素的分配机制和影响因素以及岩浆源区追踪和演化过程提供理论依据。
Granite is formed by a series of geological processes in the magma source area, and these magmas usually come from different deep crustal source areas. Apatite is a common accessory mineral in granite and has special geochemical properties. Therefore, understanding the distribution mechanism of rare earth elements in apatite is the key to studying the genesis of granite for the tracking of the magma source area and the research on the magma evolution and rock diagenesis process. Through the research on relevant experimental data and theoretical analysis, this study reveals the influence of the crystal structure and chemical composition of apatite on the distribution of rare earth elements. It is found that the Ca2+ and phosphate groups in apatite interact with the ionic radius and charge characteristics of rare earth elements, thereby affecting the compatibility and distribution behavior of rare earth elements in apatite. Combined with the research data of apatite in areas such as Nanan and Liuchen in Guangxi, as well as the previous research results, the influence of factors such as temperature and pressure on the interaction between apatite and rare earth elements is further discussed, providing a theoretical basis for studying the distribution mechanism and influencing factors of rare earth elements, as well as the tracking and evolution process of the magma source area.

References

[1]  Belousova, E.A., Griffin, W.L., O’Reilly, S.Y. and Fisher, N.I. (2002) Apatite as an Indicator Mineral for Mineral Exploration: Trace-Element Compositions and Their Relationship to Host Rock Type. Journal of Geochemical Exploration, 76, 45-69.
https://doi.org/10.1016/s0375-6742(02)00204-2
[2]  Bouzari, F., Hart, C.J.R., Bissig, T. and Barker, S. (2016) Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits. Economic Geology, 111, 1397-1410.
https://doi.org/10.2113/econgeo.111.6.1397
[3]  Harlov, D.E. (2015) Apatite: A Fingerprint for Metasomatic Processes. Elements, 11, 171-176.
https://doi.org/10.2113/gselements.11.3.171
[4]  Pan, Y. and Fleet, M.E. (2002) Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Reviews in Mineralogy and Geochemistry, 48, 13-49.
https://doi.org/10.2138/rmg.2002.48.2
[5]  Bath, A.B., Walshe, J.L., Cloutier, J., Verrall, M., Cleverley, J.S., Pownceby, M.I., et al. (2013) Biotite and Apatite as Tools for Tracking Pathways of Oxidized Fluids in the Archean East Repulse Gold Deposit, Australia. Economic Geology, 108, 667-690.
https://doi.org/10.2113/econgeo.108.4.667
[6]  McCubbin, F.M., Vander Kaaden, K.E., Tartèse, R., Boyce, J.W., Mikhail, S., Whitson, E.S., et al. (2015) Experimental Investigation of F, Cl, and OH Partitioning between Apatite and Fe-Rich Basaltic Melt at 1.0-1.2 GPA and 950-1000˚C. American Mineralogist, 100, 1790-1802.
https://doi.org/10.2138/am-2015-5233
[7]  Dietterich, H. and de Silva, S. (2010) Sulfur Yield of the 1600 Eruption of Huaynaputina, Peru: Contributions from Magmatic, Fluid-Phase, and Hydrothermal Sulfur. Journal of Volcanology and Geothermal Research, 197, 303-312.
https://doi.org/10.1016/j.jvolgeores.2010.01.003
[8]  Riker, J., Humphreys, M.C.S., Brooker, R.A. and De Hoog, J.C.M. (2018) First Measurements of OH-C Exchange and Temperature-Dependent Partitioning of OH and Halogens in the System Apatite-Silicate Melt. American Mineralogist, 103, 260-270.
https://doi.org/10.2138/am-2018-6187ccby
[9]  Chen, L. and Zhang, Y. (2018) In Situ Major, Trace-Elements and Sr-Nd Isotopic Compositions of Apatite from the Luming Porphyry Mo Deposit, NE China: Constraints on the Petrogenetic-Metallogenic Features. Ore Geology Reviews, 94, 93-103.
https://doi.org/10.1016/j.oregeorev.2018.01.026
[10]  Cao, M., Li, G., Qin, K., Seitmuratova, E.Y. and Liu, Y. (2011) Major and Trace Element Characteristics of Apatites in Granitoids from Central Kazakhstan: Implications for Petrogenesis and Mineralization. Resource Geology, 62, 63-83.
https://doi.org/10.1111/j.1751-3928.2011.00180.x
[11]  Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J. and Coogan, L.A. (2016) Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration. Economic Geology, 111, 1187-1222.
https://doi.org/10.2113/econgeo.111.5.1187
[12]  Xu, L., Bi, X., Hu, R., Tang, Y., Wang, X., Huang, M., et al. (2019) Contrasting Whole-Rock and Mineral Compositions of Ore-Bearing (Tongchang) and Ore-Barren (Shilicun) Granitic Plutons in SW China: Implications for Petrogenesis and Ore Genesis. Lithos, 336, 54-66.
https://doi.org/10.1016/j.lithos.2019.03.031
[13]  蔡永丰, 麻艺超, 周云, 等. 广西花山岩体矿物学、年代学、地球化学特征及其大地构造意义[J]. 地质与勘探, 2018, 54(5): 940-956.
[14]  冯佐海, 梁金城, 张桂林, 等. 论广西东部中生代花岗岩类岩石谱系单位——以姑婆山-花山花岗岩体为例[J]. 桂林工学院学报, 2002(3): 333-340.
[15]  付伟, 赵芹, 罗鹏, 等. 中国南方离子吸附型稀土矿床成矿类型及其母岩控矿因素探讨[J]. 地质学报, 2022, 96(11): 3901-3925.
[16]  顾晟彦, 华仁民, 戚华文. 广西花山-姑婆山燕山期花岗岩的地球化学特征及成因研究[J]. 岩石矿物学杂志, 2006(2): 97-109.
[17]  郭春丽, 刘泽坤. 华南地区加里东期花岗岩: 成岩和成矿作用的地质与地球化学特征[J]. 地球科学与环境学报, 2021, 43(6): 927-961.
[18]  张波, 黄长帅, 卢见昆. 小平山稀土元素矿床地质特征及成因[J]. 矿床地质, 2014, 33(S1): 57-58.
[19]  徐磊明, 袁忠信. 广西清湖二长岩稀土元素地球化学[J]. 岩石矿物学杂志, 1992(4): 289-298.
[20]  徐磊明, 袁忠信. 清湖二长岩风化壳稀土元素地球化学[J]. 广西地质, 1992(1): 37-45.
[21]  黄长帅, 廖航, 卢见昆, 等. 广西岑溪糯垌稀土矿床地质特征及成矿规律[J]. 矿产与地质, 2014, 28(5): 551-554.
[22]  王朝鹏. 广西崇左六汤稀土矿滑坡监测系统与预警技术研究[D]: [硕士学位论文]. 赣州: 江西理工大学, 2018.
[23]  李平初. 广西六陈岩体与离子吸附型稀土矿成矿及成因[J]. 四川有色金属, 2014(1): 23-27.
[24]  闫春江. 广西佳平稀土矿成矿机理研究[D]: [硕士学位论文]. 桂林: 桂林理工大学, 2024.
[25]  张定源, 姚仲友, 王天刚, 等. 澳大利亚拉克兰造山带成矿地质条件与主要矿化类型[J]. 地质通报, 2014, 33(Z1): 255-269.
[26]  张晓兵, 郭锋, 张博. 福建漳州花岗闪长岩成因: 来自磷灰石地球化学的约束[J]. 地球化学, 2022, 51(5): 585-597.
[27]  Chelle-Michou, C. and Chiaradia, M. (2017) Amphibole and Apatite Insights into the Evolution and Mass Balance of Cl and S in Magmas Associated with Porphyry Copper Deposits. Contributions to Mineralogy and Petrology, 172, 1-26.
https://doi.org/10.1007/s00410-017-1417-2
[28]  Zhang, L., Chen, Z., Wang, F. and Zhou, T. (2021) Apatite Geochemistry as an Indicator of Petrogenesis and Uranium Fertility of Granites: A Case Study from the Zhuguangshan Batholith, South China. Ore Geology Reviews, 128, Article 103886.
https://doi.org/10.1016/j.oregeorev.2020.103886
[29]  谢其锋, 蔡元峰, 董云鹏, 等. 福建紫金山矿田黑云母花岗岩锆石U-Pb年代学和Hf同位素组成[J]. 地球科学, 2019, 44(4): 1311-1327.
[30]  郑瑜林, 张长青, 刘欢, 等. 滇西姚安金矿床磷灰石化学特征及指示意义[J]. 矿床地质, 2021, 40(1): 156-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133