|
Material Sciences 2025
基于Co3O4-RGO材料的改性隔膜制备及其在锂硫电池中的应用
|
Abstract:
近年来,由于能源短缺和环境污染,锂硫电池以其低成本、高能量密度和环境友好的特点受到了广泛关注。然而,多硫化锂(LiPSs)引起的穿梭效应大大降低了锂硫电池的循环性能和寿命。为了解决这一问题,我们采用一步水热法设计了Co3O4-RGO复合材料,并将其用于聚丙烯(PP)隔膜的改性。Co3O4-RGO复合材料具有较高的电子导电性和吸附性能,为电子转移提供了通道,有效抑制了LiPSs的穿梭。用Co3O4-RGO-PP隔膜组装的锂硫电池具有令人满意的比容量。在0.1 C下,第一次放电容量达到1365.8 mAh·g?1,循环100次后,放电容量保持在1243.9 mAh·g?1。在0.5 C下循环350次后,放电容量为1073.9 mAh·g?1,每循环平均容量衰减率为0.0338%。这些结果表明,Co3O4-RGO-PP在制备高性能锂硫电池方面具有良好的应用前景。
In recent years, due to energy shortage and environmental pollution, lithium-sulfur batteries (LSBs) with low cost, high energy density, and environmentally friendly characteristics have attracted wide attention. However, the shuttle effect caused by lithium polysulfides (LiPSs) greatly reduces the cycle performance and life of LSBs. To solve this problem, we design a Co3O4-RGO composite by the one-step hydrothermal method, which is used to modify the polypropylene (PP) separator. The Co3O4-RGO composite has high electronic conductivity and adsorption performance, which provides channels for electron transfer and effectively inhibits the shuttle of LiPSs. The lithium-sulfur battery assembled with a Co3O4-RGO-PP separator possesses satisfactory specific capacities. The first discharge capacity reaches 1365.8 mAh·g?1 at 0.1 C, and the discharge capacity maintains at 1243.9 mAh·g?1 after 100 cycles. After 350 cycles at 0.5 C, the discharge capacity is 1073.9 mAh·g?1, and the average capacity attenuation rate per cycle is 0.0338%. These results indicate that the Co3O4-RGO-PP separator would have a good application prospect for high-performance LSBs.
[1] | Li, N., Meng, T., Ma, L., Zhang, H., Yao, J., Xu, M., et al. (2020) Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots: Toward More Practical S Cathodes for Li-S Cells. Nano-Micro Letters, 12, Article No. 145. https://doi.org/10.1007/s40820-020-00484-4 |
[2] | Zhang, C.Y., Zhang, C., Pan, J.L., Sun, G.W., Shi, Z., Li, C., et al. (2022) Surface Strain-Enhanced MoS2 as a High-Performance Cathode Catalyst for Lithium-Sulfur Batteries. eScience, 2, 405-415. https://doi.org/10.1016/j.esci.2022.07.001 |
[3] | Zhou, L., Danilov, D.L., Eichel, R. and Notten, P.H.L. (2020) Host Materials Anchoring Polysulfides in Li-S Batteries Reviewed. Advanced Energy Materials, 11, Article ID: 2001304. https://doi.org/10.1002/aenm.202001304 |
[4] | Yang, J., Cao, C., Qiao, J., Qiao, W., Jiang, B., Tang, C., et al. (2023) Self-assembled BNNSs/rGO Heterostructure as a Synergistic Adsorption and Catalysis Mediator Boosts the Electrochemical Kinetics of Lithium-Sulfur Batteries. Chemical Engineering Journal, 471, Article ID: 144737. https://doi.org/10.1016/j.cej.2023.144737 |
[5] | Guo, J., Jiang, H., Yu, M., Li, X., Dai, Y., Zheng, W., et al. (2022) Sandwich-Structured Flexible Interlayer with Co3O4 Nanoboxes Strung along Carbon Nanofibers on Both Sides for Fast Li+ Transport and High Redox Activity in High-Rate Li-S Batteries. Chemical Engineering Journal, 449, Article ID: 137777. https://doi.org/10.1016/j.cej.2022.137777 |
[6] | Guo, J., Jiang, H., Li, X., Chu, Z., Zheng, W., Dai, Y., et al. (2021) Defective Graphene Coating-Induced Exposed Interfaces on CoS Nanosheets for High Redox Electrocatalysis in Lithium-Sulfur Batteries. Energy Storage Materials, 40, 358-367. https://doi.org/10.1016/j.ensm.2021.05.031 |
[7] | Shen, J., Xu, X., Liu, J., Wang, Z., Zuo, S., Liu, Z., et al. (2021) Unraveling the Catalytic Activity of Fe-Based Compounds toward Li2Sx in Li-S Chemical System from d-p Bands. Advanced Energy Materials, 11, Article ID: 2100673. https://doi.org/10.1002/aenm.202100673 |
[8] | Mo, Y., Yang, K., Lin, J., Liu, M., Ye, G. and Yu, J. (2023) CoSe2 Anchored Vertical Graphene/Macroporous Carbon Nanofibers Used as Multifunctional Interlayers for High-Performance Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 11, 6349-6360. https://doi.org/10.1039/d2ta10020g |
[9] | Zhang, Z., Dong, Y., Gu, Y., Lu, P., Xue, F., Fan, Y., et al. (2022) Graphene-Nanoscroll-Based Janus Bifunctional Separators Suppress Lithium Dendrites and Polysulfides Shuttling Synchronously in High-Performance Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 10, 9515-9523. https://doi.org/10.1039/d2ta01515c |
[10] | Chang, Z., Dou, H., Ding, B., Wang, J., Wang, Y., Hao, X., et al. (2017) Co3O4 Nanoneedle Arrays as a Multifunctional “Super-Reservoir” Electrode for Long Cycle Life Li-S Batteries. Journal of Materials Chemistry A, 5, 250-257. https://doi.org/10.1039/c6ta07202j |
[11] | Xia, S., Zhou, Q., Peng, B., Zhang, X., Liu, L., Guo, F., et al. (2022) Co3O4@mwcnt Modified Separators for Li-S Batteries with Improved Cycling Performance. Materials Today Energy, 30, Article ID: 101163. https://doi.org/10.1016/j.mtener.2022.101163 |
[12] | Xu, J., Zhang, W., Chen, Y., Fan, H., Su, D. and Wang, G. (2018) MOF-Derived Porous N-Co3O4@N-C Nanododecahedra Wrapped with Reduced Graphene Oxide as a High Capacity Cathode for Lithium-Sulfur Batteries. Journal of Materials Chemistry A, 6, 2797-2807. https://doi.org/10.1039/c7ta10272k |
[13] | Liu, J., Li, G., Luo, D., Li, J., Zhang, X., Li, Q., et al. (2023) Incorporation of Heteroatomic Fe Activates Rapid Catalytic Behaviors of Co3O4 Hollow Nanoplates toward Advanced Lithium-Sulfur Batteries. Advanced Functional Materials, 34, Article ID: 2303357. https://doi.org/10.1002/adfm.202303357 |
[14] | Wu, L., Cai, C., Yu, X., Chen, Z., Hu, Y., Yu, F., et al. (2022) Scalable 3D Honeycombed Co3O4 Modified Separators as Polysulfides Barriers for High-Performance Li-S Batteries. ACS Applied Materials & Interfaces, 14, 35894-35904. https://doi.org/10.1021/acsami.2c07263 |
[15] | Peng, J., Huang, J., Li, W., Wang, Y., Yu, X., Hu, Y., et al. (2018) A High-Performance Rechargeable Li-O2 Battery with Quasi-Solid-State Electrolyte. Chinese Physics B, 27, Article ID: 078201. https://doi.org/10.1088/1674-1056/27/7/078201 |
[16] | Li, G., Lei, W., Luo, D., Deng, Y., Wang, D. and Chen, Z. (2017) 3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium-Sulfur Batteries. Advanced Energy Materials, 8, Article ID: 1702381. https://doi.org/10.1002/aenm.201702381 |
[17] | Lv, Y., Bai, L., Jin, Q., Deng, S., Ma, X., Han, F., et al. (2024) VSe2/V2C Heterocatalyst with Built-In Electric Field for Efficient Lithium-Sulfur Batteries: Remedies Polysulfide Shuttle and Conversion Kinetics. Journal of Energy Chemistry, 89, 397-409. https://doi.org/10.1016/j.jechem.2023.10.003 |